Fahrzeughardware - Wagen 2

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen


Autor: Prof. Dr.-Ing. Schneider


Neu

Übersicht

Systemstruktur

Systemarchitekur

Ordnerstruktur

Inbetriebnahme

Dokumente

Inbetriebnahme_Tests.docx

Tests

Akkus

Bevor das Fahrzeug in Betrieb genommen werden kann, müssen die Akkus überprüft werden. Die Anleitung hierzu finden Sie unter dem folgenden Link:

Gesamtaufbau

Das Fahrzeug basiert auf einem normalen 1:10 RC-Fahrzeug der Firma LRP. Auf dessen Grundgerüst ist ein DS1104 R&D Controller Board der Firma DSpace installiert, mit welchem alle angebrachten Sensoren verbunden sind. Über einen VGA-Anschluss an der Front des Fahrzeugs hinter dem Laserscanner kann der Boardcomputer mit einem Monitor verbunden werden.

Insgesamt besteht das Fahrzeug aus einzelnen Baugruppen, deren Grundlage jeweils eine gelaserte Aluminiumplatte bildet. Die allgemeine Grundlage bildet die Grundplatte, auf der das Mainboard und die weiteren Baugruppen befestigt ist. Die Grundplatte ist an dem Grundgerüst des gewöhnlichen RC-Fahrzeuggestells befestigt.

Maße

Position der Sensoren

Power Panel

Test Kamera

Sensoren und Aktoren

Im Folgenden werden alle relevanten Artikel für jeden Sensor und Aktor des Fahrzeugs.

Kamera

Gierraten Sensor

Infrarot-Abstandssensoren

Hall-Sensoren

LiDAR

Taster

Fernbedienung

Motorsteuergerät

Alt

Fahrzeug hoch-/runterfahren

Einschalten im Akku-Betrieb

Um das Fahrzeug alleine über die Akkus zu versorgen, muss der rote Kippschalter am Panel eingeschaltet werden. Auch hier gilt im Anschluss das Betätigen des schwarzen Tasters, wie beim Einschalten im Netz-Betrieb.

Schalter zum Einschalten des Akku-Betriebs

Autor:Jiaxiang Xia (Diskussion) 15:45, 3. Dez.2022 (CET)

Bild:Jiaxiang Xia (Diskussion) 11:07, 1. Nov. 2022 (CET)

Ausschalten des PCs

Grundsätzlich wird der PC durch softwaretechnisches Herunterfahren ausgeschaltet.

Im Notfall ist dies aber entweder durch Drücken des roten Kippschalters (Ein-/Ausschalter) des Powerpanels im Akkubetrieb oder durch Herausziehen des Netzteilsteckers im Netzbetrieb möglich.

ACHTUNG!! Automatisches Herunterfahren des PCs im Akkubetrieb möglich, wenn Akkuspannung unter 13,1V fällt (Sicherheitsabschaltung/Unterspannungsschutz). Beim Arbeiten im Akkubetrieb sollte demnach auf die Spannung geachtet und zwischendurch oft gespeichert werden.


Autor: Sascha Dienwiebel (Diskussion) 16:46, 4. Feb. 2014 (CET)

Ansteuerung des Antrieb- und Servomotors einschalten

Um mit dem Bordcomputer sowohl im Netz- als auch im Akku-Betrieb die Motoren ansteuern zu können, muss der silberne Kippschalter (versteckt hinter dem Powerpanel) in nachfolgender Abbildung in die rechte Stellung gestellt werden. Bei Linksstellung ist die Ansteuerung unterbrochen.

Bild fehlt noch: silberner Kippschalter hinter dem Panel

Autor: Sascha Dienwiebel (Diskussion) 14:03, 6. Feb. 2014 (CET)

Sensoren

Stellen Sie sicher, dass der Infrarot Sensor nicht verdeckt ist, bevor Sie den Fahrzeug testen.

Autor: Jiaxiang Xia (Diskussion) 00:29, 2. Dez.2022 (CET)

Taster

Die Taster an der Rückseite des Fahrzeugs dienen der Aktivierung der verschiedenen Algorithmen, d.h. Einparkalgorithmus oder Fahrt auf Rundkurs.


Taster am Power panel

Bild: Philipp Tewes (Diskussion) 13:58, 1. Feb. 2017 (CET)


Die Taster sind wie folgt belegt und mit der DS-Karte verbunden:

Taster Funktion DS1104-Anschluss
Weiß Kalibrierung des Gyrosensors IO14
Gelb Bahnspurführung Rundkurs ohne Hindernisse IO12
Blau Bahnspurführung Rundkurs mit Hindernissen IO13
Rot Einparkalgorithmus starten IO11
Grün Nicht mehr vorhanden

Der aktuelle Pinbelegungsplan der DS1104 befindet sich unter SVN Unterlagen\Dokumentation\Systemarchitektur\DS1104 - Adapterkabel – Pinbelegungsplan.xlsx


Die Implementierung der Taster in das Simulinkmodell ist unter "Einlesen der Taster" erklärt.


Autoren:

Julia Müller (Diskussion) 10:22, 4. Feb. 2014 (CET)

Update: Vincent Holthaus 13:44 Uhr, 22. Nov. 2019 (CET)

Sascha Dienwiebel (Diskussion) 12:56, 4. Feb. 2014 (CET)

Infrarotsensoren

Die Infrarotsensoren dienen der Positionserfassung bzw. Abstandsmessung von Objekten im Umfeld des Fahrzeuges. In Kombination mit dem Hall- und Gyro-Sensor werden die Infrarotsensoren für den Einparkalgorithmus verwendet. Erweiterte Informationen zum Einsatz und zur Funktion sind im Artikel Infrarotsensoren zu finden.

Gierratensensor

Der Gierratensensor (oder auch Gyrosensor bzw. Drehratensensor) des Autonomen Fahrzeugs stellt unter anderem einen Teil der Einparksensorik dar, die Ermittlung der Rotationsgeschwindigkeit des Fahrzeugs erfolgt über diesen. Weitere Informationen unter Gierratensensor.

Hall-Sensor

Der Hall-Sensor befindet sich am Antriebsmotor. Mithilfe des Hall-Sensors sollen die aktuelle Geschwindigkeit, die Fahrtrichtung und die zurückgelegte Strecke bestimmt werden. Die Bestimmung der Geschwindigkeit und Fahrtrichtung sind wesentliche Bestandteile des Regelkreises der Bahnplanung und Spurführung. Die Messung der zurückgelegten Strecke wird für die Bestimmung der Parklückengröße benötigt. Die weiteren Details der Hardware, sowie das physikalische Messprinzip sind in dem Artikel Hall-Sensor beschrieben.

Platine für die Verbindung zwischen der Fernbedienung den Aktoren und der D-Space Karte

In diesem Kapitel wird die Platine beschrieben, die die D-Space Karte mit der Hardware des RC-Autos verbindet. In der unten stehenden Abbildung ist der Schaltplan der Platine zu sehen. Die Stecker "ST/TH in" kommen von dem RC Empfänger. Die Stecker für "ST/TH out" verbinden den Servo und den Antriebsmotor mit der D-Space Karte.


Autor[Benutzer:Timo Schmidt| Timo Schmidt]

Laser Scanner

Es ist der LIDAR Sensor URG-04LX-UG01 der Firma HOKUYU verbaut, der einen Laserstrahl im Infrarotbereich (785nm) aussendet. Grundsätzlich ist der Sensor dazu geeignet, um die Distanz und den Winkel zu einem Objekt zu messen. LIDAR Sensoren spielen eine zentrale Rolle auf dem Weg zum automatisierten Fahren. Als markantes Merkmal sind die ersten selbstfahrenden Fahrzeuge von Google beispielsweise mit einem LIDAR Sensor auf dem Dach ausgestattet, die eine Rundumsicht ermöglichen.

Funktionsweise

Um nicht nur einen einzelnen Punkt vor dem Fahrzeug zu erfassen, wird der Laserstrahl durch einen drehbaren Spiegel nach links und rechts abgelenkt. Dadurch wird ein Winkelbereich von 240° bei einer Winkelauflösung von 0.36° erfasst. Die Messung der Distanz erfolgt bei diesem Sensor nicht nach dem Time of Flight Prinzip, sondern wird durch die Phasenverschiebung des zurückreflektierten Sensorstrahls errechnet. Aus den so gewonnenen Polarkoordinaten kann die Objekt-Position in kartesischen Koordinaten errechnet werden.

Der Sensor wird über USB mit dem PC verbunden und kann durch eine mitgelieferte API über C/C++ angesprochen werden.

Autor: Stephan Maier (Diskussion) 09:01, 12. Juli. 2016 (CET)

Kamera

Die Inbetriebnahme der Kamera wird im Artikel Inbetriebnahme der VRmagic Kamera beschrieben.
Der aktuelle Softwarestand der Kamera ist in folgendem Artikel beschrieben: OSE Softwareumgebung

Fernbedienung

Bei der Fernbedienung handelt es sich um eine 2-Kanal-Fernsteueranlage. Die Fernsteueranlage besteht aus einem Empfänger und einem Sender, d.h. einer Fernbedienung. Mithilfe der Fernbedienung kann sowohl die Lenkung als auch der Fahrtenregler des Fahrzeugs gesteuert werden.

Die Fernbedienung wird benötigt um das Fahrezeug einsatzfähig zu machen. Erst durch Einschalten der Fernbedienung kann das Fahrzeug autonom fahren. Vor dem ersten Start muss die Fernbedienung kalibriert werden (siehe SVN). Nach erfolgreicher Kalibrierung ist die blau blinkende LED erloschen und das Fahrzeug kann autonom fahren. Der Eingriff, also die Betätigung der Fernbedienung, unterbricht das autonome Fahren und darf in Notsituationen eingesetzt werden. Eine Notsituation ist immer dann vorhanden, wenn das Fahrzeug die geforderte Aufgabe nicht mehr erfüllt. Über den RC-Modus kann das Fahrzeug dann angehalten und verfahren werden. Ein Eingriff ist erfolgt, sobald der Gas-/Bremshebel oder das Drehrad der Lenkung betätigt wird. Der Eingriff muss über die blau blinkende LED am höchsten Punkt des Fahrzeugs signalisiert werden.

Funktionsweise

Die Fernbedienung überträgt zwei Signale. Ein Signal liefert die Informationen über den Lenkwinkel und das zweite Signal liefert die Informationen für das Gas- und Bremsverhalten. Gesendet werden PWM-Signale. Die Übertragung erfolgt durch Quarze mit der gleichen Frequenz, die sich im Sender und Empfänger befinden. Die Fernbedienung verfügt neben dem Drehrad für die Lenkung und dem Gas-/Bremshebel über weitere Schalter und Drehräder. Diese dienen verschiedenen Einstellungen an der Fernbedienung. Beispielsweise kann mithilfe von Trimmreglern die Neutralstellung der Lenkung und des Antriebs eingestellt werden. Details zu den Einstellungen und Funktionen sind in der Bedienungsanleitung zu finden. Diese ist im SVN abgelegt. Um den RC-Modus zum ersten Mal lauffähig zu machen muss die Anleitung im SVN beachtet werden (Link). Nach aktuellem Stand ist die Fernbedienung korrekt kalibriert und einsatzbereit. Über die ControlDesk Oberfläche kann der RC-Modus getestet werden. Das Simulink-Online-Modell muss, der Anleitung entsprechend, verändert werden. Nach der Kompilierung und der erfolgreichen Übertragung auf die dSpace Karte, kann der RC-Modus vollständig genutzt werden.


Hardware-Anbindung

Der Empfänger ist mit der DS1104 Karte verbunden. Laut aktuellem Pinbelegungsplan der DS1104 (Pinbelegungsplan) ist der Empfänger wie folgt angeschlossen:

Sender-Anschluss Kabelfarbe DS1104 Anschluss
RC-In Signal FR orange SCAP2
RC-In Signal LS orange SCAP1
RC-Out Signal LS orange ST2PWM
RC-Out Signal FR orange SPWM7

Wobei LS für Lenk-Servo uns FR für Fahrtenregler steht.


Autor: Pascal Funke (Diskussion) 09:26, 4. Jan. 2019 (CET)

Literatur

[HeSch09] Hesse, Stefan; Schnell, Gerhard: Sensoren für die Prozess- und Fabrikautomation, Auflage 4; Wiesbaden, 2009

[KlCD12] Klein, Daniel; Carolo_Doku_2012: Die Hallsensorik, S.174 ff., Lippstadt, 2012



→ zurück zum Hauptartikel: Praktikum SDE