Signalverarbeitung mit MATLAB und Künstlicher Intelligenz: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
(9 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 14: Zeile 14:
|}
|}
{|  
{|  
== MindMap ==
[[Datei:Signal Processing with MATLAB and Artificial Intelligence MindMap NNew.pdf|800px|frameless|centered|alternativtext=Signal Processing with MATLAB and Artificial Intelligence MindMap]]
== Introductiong ==
Traditionally, classical algorithms have been taught to solve engineering problems. This project solves teaching problems using artificial intelligence and compares these classical algorithms.
=== ''Signal Processing''  ===
Signal processing is the science of analyzing, modifying, and improving signals. It is essential in many modern applications such as communications, audio and image processing, biomedical signal analysis, and control systems.
==== Key Concepts ====
Signals:
''A signal is any piece of information that changes over time or space and can be measured. It may be continuous (analog) or discrete (digital).''
Transforms:
''Techniques like the Fourier Transform and the Discrete Wavelet Transform decompose signals into constituent frequency (or time-frequency) components for easier analysis''.


== Einführung ==
Filtering:
Bislang werden klassische Algorithmen zur Lösung von Ingenieuraufgaben gelehrt. Dieses Projekt löst Aufgaben der Lehre mit künstlicher Intelligenz und stellt diese klassischen Algorithmen gegenüber.
''The process of removing unwanted noise or extracting useful parts of a signal. Techniques include low-pass, high-pass, band-pass, and adaptive filters.''


== MindMap ==
Time-Domain vs. Frequency-Domain Analysis:
[[Datei:Signal Processing with MATLAB and Artificial Intelligence MindMap NNew.pdf|800px|frameless|centered|alternativtext=Signal Processing with MATLAB and Artificial Intelligence MindMap]]
 
''Time-domain analysis examines how a signal changes over time.
 
''Frequency-domain  represents how much of the signal lies within each given frequency band.''''


== Aufgabenstellung ==
== Task ==
# Einarbeitung in MATLAB<sup>®</sup> KI-Toolboxen
# [[Familiarization with MATLAB ® AI toolboxes|Familiarization with MATLAB<sup>®</sup> AI toolboxes]]
# Recherche praktischer Anwendungsbeispiele, die sich auf KI umstellen lassen
# [https://wiki.hshl.de/wiki/index.php/Practical_AI_examples Researching practical application examples that can be converted to AI]
# Umsetzung ausgewählter Beispiele
#Implementation of selected examples
# Arbeiten Sie Vor- und Nachteile der KI gegenüber herkömmlicher Datenverarbeitung heraus
#Identify the advantages and disadvantages of AI compared to conventional data processing
# Diskussion der Ergebnisse
#Discussion of the results
# Test und wiss. Dokumentation
#Test and scientific documentation
# Bereitstellung von MATLAB<sup>®</sup>-Beispielen als Wiki-Artikel
# Providing MATLAB<sup>®</sup>-examples as wiki articles


== Anforderungen ==
== Anforderungen ==
Zeile 63: Zeile 83:
[[Datei:Results2.jpg|700px|frameless|centered]]
[[Datei:Results2.jpg|700px|frameless|centered]]


== AI-Tasks ==
{| class="wikitable"
|+ style="text-align:left;"|Table 1: Task List
|-
! # !! Task
|-
| 1 || [[Lane Keeping with AI]]
|-
| 2 || [[Image Classification with AI]]
|-
| 3 || [[Object Detection with AI]]
|-
| 4 || [[Image Segmentation with AI]]
|-
| 5 || [[Facial Recognition and Analysis with AI]]
|-
| 6 || [[Image Enhancement and Restoration with AI]]
|-
| 7 || [[Content-Based Image Retrieval (CBIR) with AI]]
|-
| 8 || [[Visual Relationship Detection with AI]]
|-
| 9 || [[Visual Relationship Detection with AI]]
|}


== Repository ==
== Repository ==

Version vom 24. März 2025, 02:09 Uhr

Abb. 1: Signalverarbeitung mit MATLAB® und Künstlicher Intelligenz
Autor: Moye Nyuysoni Glein Perry
Art: Project Work
Starttermin: 14.11.2024
Abgabetermin: 31.03.2025
Betreuer: Prof. Dr.-Ing. Schneider

MindMap

Signal Processing with MATLAB and Artificial Intelligence MindMap

Introductiong

Traditionally, classical algorithms have been taught to solve engineering problems. This project solves teaching problems using artificial intelligence and compares these classical algorithms.

Signal Processing

Signal processing is the science of analyzing, modifying, and improving signals. It is essential in many modern applications such as communications, audio and image processing, biomedical signal analysis, and control systems.

Key Concepts

Signals:

A signal is any piece of information that changes over time or space and can be measured. It may be continuous (analog) or discrete (digital).

Transforms:

Techniques like the Fourier Transform and the Discrete Wavelet Transform decompose signals into constituent frequency (or time-frequency) components for easier analysis.

Filtering:

The process of removing unwanted noise or extracting useful parts of a signal. Techniques include low-pass, high-pass, band-pass, and adaptive filters.

Time-Domain vs. Frequency-Domain Analysis:

Time-domain analysis examines how a signal changes over time.

Frequency-domain represents how much of the signal lies within each given frequency band.''

Task

  1. Familiarization with MATLAB® AI toolboxes
  2. Researching practical application examples that can be converted to AI
  3. Implementation of selected examples
  4. Identify the advantages and disadvantages of AI compared to conventional data processing
  5. Discussion of the results
  6. Test and scientific documentation
  7. Providing MATLAB®-examples as wiki articles

Anforderungen

Das Projekt erfordert Vorwissen in einigen aber nicht allen nachfolgenden Themengebieten. Sollten Sie die Anforderungen nicht erfüllen, kann die Aufgabenstellung mit Blick auf Ihre Vorkenntnisse individuell angepasst werden.

Anforderungen an die wissenschaftliche Arbeit

Image Processing

Image processing refers to the use of algorithms and computational techniques to analyse, enhance, and manipulate images. It involves altering or improving images using various methods and tools. The main aim of image processing is to improve image quality. Whether it’s enhancing contrast, adjusting colours, or smoothing edges, the focus is on making the image more visually appealing or suitable for further use. It’s about transforming the raw image into a refined version of itself.


centered

Sample Task: Object Detection Identify in an Image

  • Classical Method: Circular Objects Detection

centered

  • results:

centered

  • AI based method: Detect people, cats and dogs in message using YOLO model.

centered

  • Results

centered


Repository

URL: https://svn.hshl.de/svn/MATLAB_Vorkurs/trunk/Signalverarbeitung_mit_Kuenstlicher_Intelligenz


→ zurück zum Hauptartikel: Studentische Arbeiten