AlphaBot: Geregelte Fahrt mit Linienverfolger: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Zeile 33: Zeile 33:
* Ohne umfangreiche Vorbereitung werden Sie nicht zum Praktikum zugelassen.
* Ohne umfangreiche Vorbereitung werden Sie nicht zum Praktikum zugelassen.


'''Arbeitsergebnis:''' <code>kalibriereLinienverfolger.ino</code>
'''Arbeitsergebnis:''' <code>void KalibriereLinienVerfolger()</code>


== Lernzielkontrollfragen ==
== Lernzielkontrollfragen ==

Version vom 19. Mai 2023, 10:51 Uhr

Abb. 1: Geregelte Fahrt mit Linienverfolger
Abb. 2: AlphaBot Linienverfolger

Autor: Prof. Dr.-Ing. Schneider
Modul: Praxismodul I
Lehrveranstaltung: Mechatronik, Informatik Praktikum 2, 2. Semester

Inhalt

  • Inbetriebnahme des Linienverfolgungssensors
  • Kalibrierung des Linienverfolgungssensors
  • 2-Punkt-Regler
  • PD-Regler
  • x-y-Plot der Roboterpose

Lernziele

Nach Durchführung dieser Lektion können Sie

  • geregelt einer Linie folgen.
  • den Kurswinkel aus differenzieller Odometrie bestimmen und darstellen.
  • die Funktion eines PID-Reglers erläutern.
  • einen PD-Regler systematisch auslegen.
  • die Auslegung systematisch dokumentieren

Vorbereitung/Hausaufgabe

Bereiten Sie diese Aufgabe für den Praktikumstermin vor.

  • Planen Sie jede Aufgabe als PAP.
  • Nehmen Sie den Linienverfolger anhand der Beispiel E28_IR_Line_Tracking_Sensor_Messung und E28b_IR_Line_Tracking_Sensor in Betrieb.
  • Nutzen Sie das Tutorial AlphaBot_Linienverfolgungsssensor zur Einarbeitung.
  • Kalibrieren Sie den Sensor.
  • Zeigen Sie die Messwerte im Seriellen Monitor an.
  • Beantworten Sie die Lernzielkontrollfragen.
  • Ohne umfangreiche Vorbereitung werden Sie nicht zum Praktikum zugelassen.

Arbeitsergebnis: void KalibriereLinienVerfolger()

Lernzielkontrollfragen

Lernzielkontrollfragen:

  • Wie funktioniert der Linienverfolgungssensors technisch?
  • Arbeitet der Sensor passiv?
  • Welche Bauteile kommen in Sender und Empfänger zum Einsatz?
  • Welche Wellenlänge hat das ausgesendete Licht? Ist dieses sichtbar?
  • Wieso und wie wird der Sensor kalibriert?
  • Erläutern Sie wie und wieso ein gewichteter Mittelwert gebildet wird.
  • Welchen Messbereich hat das Sensorsystem?
  • Welcher Wert dient als Sollwert?

Versuchsdurchführung

Aufgabe 8.1: 2-Punkt-Regler

Programmieren Sie einen 2-Punkt-Regler, damit der AlphaBot der schwarzen Linien folgt. Der 2-Punkt-Regler fährt beispielsweise nach rechts, wenn er hell sieht und nach links, wenn er Schwarz sieht. So "hangelt" er sich zappelig an der Linie entlang.

Arbeitsergebnissse: ZweiPunktRegler.pap, ZweiPunktRegler.ino


Aufgabe 8.2: PD-Regler

Abb. 4: Regelkreis für den Linienverfolgungs-Algorithmus

Programmieren Sie einen PD-Regler gemäß Abb. 4, damit der AlphaBot der schwarzen Linien folgt. Planen Sie zuvor das Programm als PAP.

  1. Wählen Sie den Sollwert als Konstante.
  2. In welchem Bereich bewegt sich der Istwert?
  3. Setzen Sie die Motorsteuerung mit dem Befehl MotorRun(L,R) um, wobei gilt .
  4. Experimentieren Sie, welche Parameter PID die besten Ergebnisse liefern.
  5. Dokumentieren Sie Ihre Ergebnisse systematisch tabellarisch.

Arbeitsergebnisse: PDRegler.pap, PDRegler.ino, PD_Parametervariation.xslx

Aufgabe 8.3: Geradeausfahrt mit Linienverfolger

Nun wollen wir gleichzeitig den Ultraschall und Linienverfolger nutzen.

  1. Bereiten Sie sich vor, indem Sie die Funktion des Linienverfolgungssensors in der gängigen Fachliteratur (z. B. AlphaBot - Linienverfolgungssensor) recherchieren und erläutern können.
  2. Nutzen Sie schwarzes Klebeband auf einem hellen Untergrund (z. B. weißes Blatt Papier), um eine gerade Fahrstrecke von 2 m zu markieren.
  3. Drehen Sie den Ultraschall-Sensor auf 180° (Blick auf die Wand).
  4. Messen Sie während der Fahrt die gefahrene Strecke (x) mit der Odometrie.
  5. Messen Sie während der Fahrt den Abstand zur Wand (y) mit dem Ultraschall Sensor.
  6. Folgen Sie der schwarzen Linie möglichst geradlinig.
  7. Experimentieren Sie, welche Parameter PID die besten Ergebnisse liefern.
  8. Dokumentieren Sie Ihre Ergebnisse systematisch tabellarisch.
  9. Zeichnen Sie die Roboterpose (x,y,ψ) in MATLAB®.

Arbeitsergebnisse: PDReglerUltraschall.pap, PDReglerUltraschall.ino, zeigeRoboterpose.m

Aufgabe 8.4: Nachhaltige Doku

Sichern Sie alle Ergebnisse mit beschreibendem Text (message) in SVN.

Arbeitsergebnis in SVN: SVN Log

Tutorials

Demos

  • E28_IR_Line_Tracking_Sensor_Messung
  • E28b_IR_Line_Tracking_Sensor

Literatur


→ Termine 1 2 3 4 5 6 7 8 9 10 11
→ zurück zum Hauptartikel: Informatik Praktikum 2