LED Matrix Laufschrift
Autoren: Maleen Koslowski, Benjamin Reuter
Betreuer: Prof. Schneider
→ zurück zur Übersicht: WS 20/21: Fachpraktikum Elektrotechnik (MTR)
Einleitung
Das Projekt 'LED Matrix Laufschrift' ist Teil des GET Fachpraktikums im 5. Semester, welches im Studiengang Mechatronik absolviert wird. Das Ziel des GET-Projektes ist es ein selbst entwickeltes mechatronisches System zu konstruieren und zu fertigen. Als Grundlage wird eine Zusammenstellung von elektronischen Bauteilen sowie ein Arduino Mikrocontroller aus einem Baukastensatz, der Firma Funduino, verwendet. Die erarbeiteten Projekte werden auf einer digitalen Messe vorgestellt.
Wichtige Kriterien, die erfüllt werden müssen, sind:
- Die mechanische Konstruktion des Projektes
- Die elektrische Funktionsfähigkeit
- Die Programmierung eines Arduinos
Wir ( Maleen Koslowski und Benjamin Reuter) haben eine LED Matrix Laufschrift geplant, die mittels eines LED-Panels die Außentemperatur (in ° C) sowie die Uhrzeit und das Datum wiedergeben kann. Als Extra wollen wir einen Motivationsspruch oder einen Gruß über die Laufschrift laufen lassen. Damit am Ende der Projektzeit jeder eine Laufschrift hat, bauen wir zwei Stück nach gleichen Anforderungen. Personalisiert werden sie durch die Farbauswahl der Schrift und des Gehäuses sowie mit dem Motivationsspruch.
Anforderungen
Die LED Matrix Laufschrift soll folgende Anforderungen erfüllen:
- Schlichtes/modernes Design
- Aktuelle Außentemperaturanzeige
- Zeit- und Datumsanzeige
- Skip-Funktion durch die Anzeigeoptionen mittels Taster
- Temperaturangepasstes Leuchten der Temperaturangabe
- Motivationsspruch, der über die Matrix läuft
Funktionaler Systementwurf/Technischer Systementwurf
Der Systementwurf zeigt die Elemente, mit denen das Projekt umgesetzt werden soll. Hauptkomponente ich das LED Matrix Panel, das als Ausgabeeinheit dient. Um die Temperatur erfassen zu können, wird ein Temperatur und Feuchtigkeitssensor eingesetzt, dessen Werte von einem Arduino UNO verarbeitet und auf dem Panel angezeigt werden. Neben der Temperatur sollen auch das Datum und die Uhrzeit des aktuellen Tages angezeigt werden. Da das gleichzeitige Anzeigen aller Ansichten nicht möglich ist, wird ein Taster einbezogen, mit dem durch die Ansichten geschaltet werden kann. Alle Komponenten werden in einem Gehäuse untergebracht, in das man dank eines abnehmbaren Deckels reingucken kann.
Komponentenspezifikation
Komponenten | Beschreibung | Bild |
---|---|---|
Arduino UNO | Herzstück des Projektes ist der Arduino Uno. (Die akzuellste Version ist der Arduino UNO R3) Dieser besitzt einen Mikrocontroller von ATMEL, der ATMEGA 328P. Außerdem hat der Arduino UNO 14 digitale I/O Pins, davon können sechs Pins als PWM Kanäle genutzt werden. Darüber hinaus sind sechs analoge Input Pins verfügbar. Die I/O Pins können maximal mit einem Strom von 20mA belastet werden. Der Arduino benötigt eine Betriebsspannung von 5V. Weitere Informationen sind dem Datenblatt[2] zu entnehmen. | |
DS1307-Module V03 | Die Real Time Clock ermöglicht das Auslesen und Setzen der aktuellen Urzeit und Datum. Dieses Modul dient dazu, die Uhrzeit und das Datum beizubehalten. Im Falle einer Spannungsfreiheit (z.B. Hauptstecker gezogen) muss somit die Uhr-/Datumseingabe nicht neu eingegeben werden. Mit einer 3V-Knopfzelle ist diese Echtzeituhr in der Lage, die Zeit bis zu 5 Jahre mitzuführen. | |
Display | Des weiteren wurde ein Display mit einer Anzeige aus 16 Zeichen pro Zeile und zwei Zeilen verwendet, um dem Nutzer Rückmeldung über Systemparameter zu geben. Dieses Display wird über eine I2C Schnittstelle betrieben. | |
STP16NF06L n-Kanal MOSFET | Zur Schaltung größerer Lasten wurde ein n-Kanal MOSFET der Firma ST verwendet. Dieser kann Spannungen bis 60 Volt schalten und hält Ströme bis zu 16 Amper aus. Durchlasswiderstand ist kleiner als 0,09 Ohm und typischerweise 0,07 Ohm. Der MOSFET wird in einem TO-220 Gehäuse geliefert.[4] | |
Optokoppler EL817 | Aufgrund der unterschiedlichen Spannungsniveaus der verschiedenen Stromkreise des Fahrzeuges und des Mikrokontroller wurde ein Optokoppler verwendet. Auf der Eingangsseite schaltet er mit 1,2Volt und auf der Ausgangsseite können bis zu 35Volt geschaltet werden. Hierbei ist eine Isolierung von Aus- und Eingangsseite bis zu 5000V gewährleistet. Beide Seiten können bis zu 50mA leiten. Die Gehäuseform entspricht einem DIP mit 4 Anschlüssen.[6] | |
Widerstände | Es wurden 2 330Ohm und 3 10kOhm Widerstände zur Realisierung der Schaltung verwendet. Dabei kommen die 330Ohm Widerständen zur Strombegrenzung und die 10kOhm Wiederstände als Pullup- beziehungsweise Pulldown-Wiederstand zum Einsatz. Aus Kostengründen wurden Kohleschichtwiderstände mit einer Genauigkeit von 5% verwendet. Aufgrund des Verwendungszweckes reicht diese Genauigkeit. | |
Diode BA 159 | In der Schaltung für die Nutzereingabe wurde eine Gleichrichterdiode verwendet. Diese Diode hält bis zu 1000 Volt in Sperrrichtung und 1 Amper stand.[8] | |
RC-Auto | Als Basis für das Projekt wurde ein Ferngesteuertes Modellauto der Firma Dickie Toys modifiziert. Es besitzt Federung, Heckantrieb und Lenkung. Der Motor kann in nur einer Leistungsstufe betrieben werden. |
Umsetzung (HW/SW)
Mittels Fritzing wurde die Software relevante Hardware eingezeichnet und verbunden.
Das RGB LED Matrix Panel belegt die Digitalen Pins 2 bis 10, sowie die Analogen Pins A0 bis A2 und mehrere GND Anschlüsse.
Der DHT11 Sensor übermittelt seine Daten an den Arduino über den Digitalen Pin 11. Diese Daten beinhalten die aktuelle Temperatur in °C und die Raumfeuchtigkeit in %RH. Außerdem ist dieser mit dem 5V Pin des Arduionos und GND verbunden.
Desweiteren ist ein RTC Modul verbunden. Dieser verwendet die Steckplätze SDA und SCL, sowie den 5V Pin und GND. Das RTC Modul übermittelt die Daten Tag, Monat, Jahr, Stunde, Minute und Sekunde zum Aruino. Da in dem RTC Modul eine kleine 3V Batterie verbaut ist läuft die interne Uhr weiter, auch wenn der Arduino das Modul nicht mehr mit Spannung versorgt.
Zum Schluss ist der Taster mit dem Digitalen Pin 12 und GND verbunden. An dem Digitalen Pin 12 liegt ein High Signal an, wenn der Taster nicht betätigt ist. Sobald dieser gedrückt wird ist das Signal Low und der Arduino schaltet durch die Programme. Software technisch ist nach jedem Knopfdruck eine gewisse Zeit implementiert worden, die das zu schnelle durchschalten verhindert. Nach jedem Knopfdruck dauert es 1 Sekunde bis das Programm auf das Signal des Tasters wieder reagiert.
Zusätzlich sind der Arduino und das Matrix Panel über AC/DC Wandler mit dem 230V~ Hausnetz verbunden. Der AC/DC Wandler für das Matrix Panel liefert 5V⎓ und bis zu 5A, je nachdem wie viele Pixel aktiv sind. Der zweite AC/DC Wandler wandelt die Spannung auf 12V⎓. Diese wird vorher noch auf 9V⎓ mittels eines Spannungsreglers reguliert. Diese 9V⎓ versorgen dann den Arduino.
Komponententest
Ergebnis
Zusammenfassung
Lessons Learned
Projektunterlagen
Projektplan
Projektdurchführung
YouTube Video
Das YouTube Video zeigt einige Aufnahmen, die während der Projektzeit (Oktober - Januar) gemacht wurden.
Einige Informationen rund um das Projekt sind ebenfalls stickpunktartig aufgeführt.
Weblinks
Literatur
→ zurück zur Übersicht: WS 20/21: Fachpraktikum Elektrotechnik (MTR)
- ↑ Eigenes Dokument
- ↑ Arduino: Arduino- ArduinoBoardUno. 2021. Online im Internet: https://www.arduino.cc/en/Main/arduinoBoardUno> Abruf: 05.01.2021
- ↑ https://cdn-reichelt.de/bilder/web/artikel_ws/B400/PICTURE_2SS52M.jpg
- ↑ STMikroelektronics: STP16NF06L/FP. 2004. Online im Internet: https://cdn-reichelt.de/documents/datenblatt/A200/TXSTM-POWERMOSFET-STX-16NF06L_EN.pdf; Abruf: 05.01.2021
- ↑ https://cdn-reichelt.de/bilder/web/xxl_ws/A200/TO-220.png
- ↑ EVERLIGHT ELETCRONICS CO., LTD: Technical Data Sheet - Photocoupler-EL817 Series. 2004. Online im Internet: https://cdn-reichelt.de/documents/datenblatt/A500/EL817-EVL.pdf; Abruf: 05.01.2021
- ↑ https://cdn-reichelt.de/bilder/web/artikel_ws/A501/DIP-4.jpg
- ↑ Continental Device India Limited: FAST SWITCHING PLASTIC RECTIFIERS - BA157, BA158, BA159. Jahr Unbekannt. Online im Internet: https://cdn-reichelt.de/documents/datenblatt/A400/BA157_BA158_BA159_CDIL.pdf; Abruf: 05.01.2021
- ↑ https://cdn-reichelt.de/documents/datenblatt/A400/BA157_BA158_BA159_CDIL.pdf
- ↑ Eigenes Dokument
- ↑ Eigenes Dokument