SoSe24 - Autonomes Einparken (AEP)
Autor: | Prof. Dr.-Ing. Schneider |
Thema: | Autonomes Einparken (AEP) |
Workshoptermin: | 23.05.2024 |
Lernzielkontrolle 2: | 06.06.2024 |
Abgabe als Wiki-Artikel: | 13.06.2024 |
Einleitung
Lernziele
Nach erfolgreicher Teilnahme am Workshop:
- können Sie den Ablauf des Einparkalgorithmus zeichnen.
- kennen Sie die wichtigsten Parameter, um das Einparken zu parametrieren.
- können Sie die Funktion der Einparksensorik beschreiben und haben diese erfolgreich getestet.
- können Sie in der Simulation autonom einparken.
Bewertung
Die Bewertung erfolgt im Rahmen der Lernzielkontrolle 2 am 06.06.2024.
Voraussetzungen
- Für den Workshop benötigen Sie MATLAB/Simulink in der Version 2019b.
- Studieren Sie die Praktikumsordnung.
- Die unter Vorbereitung aufgeführten Aufgaben sind vor dem Workshoptermin vorzubereiten. Der Workshop baut auf Ihre Vorbereitung auf.
Der Workshop setzt nachfolgende Kenntnisse voraus:
- die Grundlagen der Programmierung,
- der Umgang mit der Versionsverwaltung SVN und
- der Umgang mit MATLAB/Simulink.
Ablauf des Praktikums
Uhrzeit | Agenda | Form | Bearbeiter |
---|---|---|---|
08:15 | Begrüßung | Prof. Schneider | |
08:20 | 2.1.1 Gyro LPR510AL | Einzelpräsentationen, max. 5 Minuten | Daniel Block, Paul Janzen |
08:35 | 2.1.2 Lego Gyro | Einzelpräsentationen, max. 5 Minuten | Dennis Fleer, Philipp Sander |
08:40 | 2.1.3 Gyro LPR530AL | Einzelpräsentationen, max. 5 Minuten | Marc Ebmeyer |
08:45 | 2.2 Theorie des AEP | Einzelpräsentationen, max. 5 Minuten | Yunkai Lin, Xiangyao Liu, Yuhan Pan |
08:50 | 2.3 Aktueller Stand des AEP-Algorithmus | Einzelpräsentationen, max. 10 Minuten | Dennis Fleer |
09:00 | 2.4 Test der Einparksensorik | Einzelpräsentationen, max. 10 Minuten | Daniel Block |
09:10 | 2.5 AEP Simulation | Einzelpräsentationen, max. 10 Minuten | Paul Janzen |
09:20 | 2.6 AEP Sensorik | Gruppenarbeit am Fahrzeug, max. 30 Minuten | alle |
10:00 | 2.7 Autonomes Einparken | Gruppenarbeit am Fahrzeug, max. 25 Minuten | alle |
10:25 | Zusammenfassung | Gruppenarbeit am Whiteboard | alle |
10:30 | Veranstaltungsende |
Versuchsvorbereitung
Hausaufgabe 1.1 Einparkalgorithmus
Arbeiten Sie sich anhand der HSHL-Wiki Artikel und der angegebenen Quellen [1-3] in den Einparkalgorithmus ein.
Beantworten Sie die Fragen:
- Wie breit muss die Lücke mindestens sein, damit ein Einparkmanöver möglich ist?
- In welchem lateralen Abstand p beginnt man das Parkmanöver?
- Welchen Kreisbogen sollte man fahren, wie groß ist also der Winkel α?
- Zeichnen Sie ein Zustandsdiagramm mit yED, welches die Zustände und Transitionen des Einparkalgorithmus veranschaulicht.
Hausaufgabe 1.2 Simulation des Einpark Assistenten (EPA)
Schauen Sie sich die Parksimulation in Simulink an und erarbeiten Sie die nachfolgenden Fragen.
- Wo sind die Parameter gespeichert?
- Welches sind die wichtigsten Parameter?
- Welches Fahrzeugmodell ist bei der Fahrt hinterlegt?
- Welche Parksensorik wird simuliert?
- Welcher Parkalgorithmus ist hinterlegt? Fertigen Sie ein PAP an.
Wiki-Link: AEP_-_Einparkalgorithmus
Hausaufgabe 1.3 Simulation der Einparksensorik (SenAbs)
Machen Sie sich mit dem Simulink-Block SenAbs vertraut. Beantworten Sie die nachfolgenden Fragen.
- Wie wird die Parksensorik simuliert?
- Wie werden Objekte detektiert?
- Welches Optimierungspotential fällt Ihnen auf?
- Machen Sie sich mit der Testfunktion für die Einparksensorik vertraut.
Links:
Hausaufgabe 1.4 Simulation des Einparkens
- Simulieren Sie das autonome Einparken.
- Erarbeiten Sie Verbesserungsvorschläge für die Simulation.
- Messen Sie hierzu die Simulationszeiten in Simulink und identifizieren Sie die "Zeitfresser". Wie lässt sich die Simulation beschleunigen?
Workshop
Aufgabe 2.1 Präsentation der Ergebnisse von Workshop 2
Dauer: 15 Minuten
- Präsentieren Sie in 5 Minuten anhand Ihres Wiki Artikels die Ergebnisse von Workshop 2.
# | Thema | Sensor | Team |
---|---|---|---|
1 | Workshop 2 - SenGier/SabGier - Gruppe 1 - SoSe2024 | Wagen 1 - Gyro LPR510AL | Daniel Block, Paul Janzen |
2 | Workshop 2 - SenGier/SabGier - Gruppe 2 - SoSe2024 | Wagen 2 - Lego Gyro | Dennis Fleer, Philipp Sander |
3 | Workshop 2 - SenGier/SabGier - LPR530AL | Wagen 2 - Gyro LPR530AL | Marc Ebmeyer |
Arbeitsergebnis: Übersicht der Funktion der Gierratensensoren der Wagen
Aufgabe 2.2 Theorie des AEP
Dauer: 5 Minuten
- Präsentieren Sie den aktuell geplanten EPA-Algorithmus aus der Hausaufgabe 1.1.
- Beantworten Sie die Lernzielkontrollfragen.
Präsentation von: Yunkai Lin, Xiangyao Liu, Yuhan Pan
Aufgabe 2.3 Aktueller Stand des AEP-Algorithmus
Dauer: 10 Minuten
- Präsentieren Sie bitte Ihre Arbeitsergebnisse aus der Vorbereitungsaufgabe 1.2.
- Beschreiben Sie die Eingangsparameter.
- Beschreiben Sie die Ausgangsparameter.
- Beschreiben Sie das Zustandsmodell.
Arbeitsergebnis: Übersicht über das Modul AEP als Statusbericht
Präsentation von: Dennis Fleer
Aufgabe 2.4 Test der Einparksensorik
Dauer: 10 Minuten
- Präsentieren Sie bitte Ihre Arbeitsergebnisse aus der Vorbereitungsaufgabe 1.3.
- Testen Sie die aktuelle MATLAB Funktion in SenAbs - Abstandssensorik mit der Test-GUI und dokumentieren Sie das Modultestergebnis.
- Erläutern Sie die Simulation der Einparksensorik.
- Beantworten Sie die Lernzielkontrollfragen.
Arbeitsergebnis: Modultestbericht, Liste offener Punkte (LoP)
Präsentation von: Daniel Block
Aufgabe 2.5 AEP Simulation
Dauer: 10 Minuten
- Präsentieren Sie bitte Ihre Arbeitsergebnisse aus der Vorbereitungsaufgabe 1.4.
- Beantworten Sie die Lernzielkontrollfragen.
Präsentation von: Paul Janzen
Aufgabe 2.6 AEP Sensorik
Dauer: 30 Minuten
- Teilen Sie sich auf die beiden Wagen auf.
- Prüfen Sie die Einparksensorik mit einer geeigneten Referenz.
- Dokumentieren Sie Ihren Systemtest.
Arbeitsergebnis: Systemtestbericht
Aufgabe 2.7 Autonomes Einparken
Dauer: 25 Minuten
- Teilen Sie sich auf die beiden Wagen auf.
- Starten Sie den Einparkvorgang.
- Analysieren Sie den Ablauf des Einparkvorgangs.
- In welchem Zustand bei welcher Transition treten Probleme auf?
- Erarbeiten Sie Lösungsoptionen
Arbeitsergebnis: Systemtestbericht
Literatur
- Herrmann, N.: Mathematik ist überall - 6. Das Parallelpark Problem. Berlin, Boston: Oldenbourg Verlag, 4. Auflage, 2012. ISBN: 978-3-486-71610-8
- Herrmann, N., u.A.: Ein mathematisches Modell zum Parallelparken. Inst. f. Angew. Mathematik, Univ. Hannover. URL. Abgerufen am 01.04.2014
- Kochen, M., Isermann, R. (Hrsg.): Fahrdynamikregelung - 14 - Parkassistent. Wiesbaden: Vieweg, 2006. ISBN 978-3-8348-9049-8
→ zurück zum Hauptartikel: Praktikum SDE | SDE-Team 2024/25