AlphaBot: MATLAB als serieller Monitor: Unterschied zwischen den Versionen
(→Demos) |
|||
Zeile 35: | Zeile 35: | ||
'''Arbeitsergebnisse''' in SVN: <code>seriellerMonitor.m</code> | '''Arbeitsergebnisse''' in SVN: <code>seriellerMonitor.m</code> | ||
{| role="presentation" class="wikitable mw-collapsible mw-collapsed" | |||
| <strong>Tipp 1 </strong> | |||
|- | |||
| Nutzen Sie das Demo <code>DemoDebug2MATLAB</code> und passen Sie dieses an. | |||
|} | |||
< | {| role="presentation" class="wikitable mw-collapsible mw-collapsed" | ||
| <strong>Tipp 2 </strong> | |||
|- | |||
| Nutzen Sie das Demo <code>DemoDebug2MATLAB</code> und passen Sie dieses an. | |||
|} | |||
{| role="presentation" class="wikitable mw-collapsible mw-collapsed" | |||
| <strong>Musterlösung </strong> | |||
|- | |||
| <iframe key="panopto" path="/Panopto/Pages/Embed.aspx?id=e1bdcb99-4590-4636-8226-afd400e8b3e2&autoplay=false&offerviewer=true&showtitle=true&showbrand=true&captions=false&interactivity=all" height="405" width="720" style="border: 1px solid #464646;" allowfullscreen allow="autoplay"></iframe> | |||
|} | |||
---- | ---- | ||
=== Aufgabe 3.2: Inbetriebnahme des AlphaBot === | === Aufgabe 3.2: Inbetriebnahme des AlphaBot === |
Version vom 31. März 2023, 13:52 Uhr
Autor: Prof. Dr.-Ing. Schneider
Modul: Praxismodul I
Lehrveranstaltung: Mechatronik, Informatik Praktikum 2, 2. Semester
Inhalt
- Nutzung von MATLAB® als seriellen Monitor.
- Inbetriebnahme des AlphaBot
- Einbindung der Bibliotheken für den AlphaBot
- Auslesen eine Potentiometers
- Ansteuern einer RGB-LED
- Statische und dynamische Messung mit dem Ultraschallsensor
- Anwendung rekursiver Filter auf Echtzeitdaten
Lernziele
Nach Durchführung dieser Lektion können Sie
- Debug-Daten speichern und via MATLAB® visualisieren.
- direkt MATLAB® als seriellen Monitor nutzen.
- den AlphaBot sicher in Betrieb nehmen, das Potentiometer auslesen und eine RGB-LED ansteuern.
- Entfernungen mit dem Ultraschall-Sensor messen.
- Messwerte in Echtzeit filtern.
Versuchsdurchführung
Aufgabe 3.1: MATLAB® als serieller Monitor
- Nutzen Sie MATLAB® um die Messdaten direkt (live) darzustellen.
- Starten Sie als Datenquelle
messeEntfernung.ino
aus Aufgabe 1.2. - Greifen Sie hierzu auf die serielle Schnittstelle zu während der Arduino Daten sendet.
- Nutzen Sie das Demo
DemoDebug2MATLAB
im SVN. - Kopieren Sie das Beispiel in Ihren Ordner und erweitern Sie es.
Nützlich MATLAB®-Befehle: fopen, feof, fgetl, strfind, isempty, plot, xlabel, ylabel, legend
Arbeitsergebnisse in SVN: seriellerMonitor.m
Tipp 1 |
Nutzen Sie das Demo DemoDebug2MATLAB und passen Sie dieses an.
|
Tipp 2 |
Nutzen Sie das Demo DemoDebug2MATLAB und passen Sie dieses an.
|
Musterlösung |
Aufgabe 3.2: Inbetriebnahme des AlphaBot
- Arbeiten Sie sich anhand des Wiki-Artikels in den AlphaBot ein. Beachten Sie besonders die Ausrichtung der Akkus. ACHTUNG BRANDGEFAHR!
- Binden Sie die AlphaBot Bibliothek nach Anleitung in die Arduino IDE ein.
- Machen Sie sich mit dem Demo
E23_RGB_LED
vertraut, so dass Sie jede Zeile erläutern können. - Kopieren Sie das Beispiel in Ihren Ordner und erweitern Sie es.
- Am Analogport
A0
ist das Potentiometer des Erweiterungsborts angeschlossen. Nutzen Sie das Potentiometer, um die Blinkfrequenz der RGB-LED im Bereich 0 s..1 s zu verändern. - Stellen Sie den Wert des Potentiometers an
A0
in MATLAB® live dar.
Lernzielkontrollfragen:
- Wie funktioniert eine RGB-LED?
- Welches sind die Parameter des HSV-Farbraums?
- Wie stellt man bei einer RGB-LED die Farbe ein?
- Wie bekommt man eine RGB-LED zum Blinken?
- Wie funktioniert ein Potentiometer?
- Wie liest man die Stellung eines Potentiometers aus?
Arbeitsergebnisse: steuereRGBLED.ino, zeigePotiWert.m
Demos: E23, E34
Hilfreiche Links:
Aufgabe 3.3: AlphaBot Ultraschall
- Machen Sie sich mit dem Demo
E05_Ultraschall_Entfernungsmessung
vertraut, so dass Sie jede Zeile erläutern können. - Kopieren Sie das Beispiel in Ihren Ordner und erweitern Sie es.
- Lesen Sie die Messwerte des Ultraschallsensors aus.
- Stellen Sie den Wert des Ultraschallsensors in MATLAB® live dar.
Lernzielkontrollfragen:
- An welchen Pins sind
Trigger
undEcho
angeschlossen? Wie lässt sich das anpassen?
Arbeitsergebnisse in SVN: messeUltraschall.ino, zeigeUltraschall.m
Demo: E05
Aufgabe 3.4: Glättung der Ultraschallmessung
- Nutzen Sie Ihre Ergebnisse aus Aufgabe 2.3 um die Messwerte in Echtzeit zu glätten.
- Vergleichen Sie die Ergebnisse des Tiefpasses mit denen des gleitenden Mittelwertfilters in einem Plot mit Achsenbeschriftung und Legende.
Arbeitsergebnisse in SVN: messeUltraschall.ino, filtereUltraschall.m
Lernzielkontrollfragen:
- Wurde das Signalrauschen geglättet?
- Ist das gefilterte Signal verzögert?
- Welchen Einfluss haben die Filterparameter?
- Wie verhalten sich die gefilterten Signal bei Ausreißern?
Aufgabe 3.5: Nachhaltige Doku
Sichern Sie alle Ergebnisse mit beschreibendem Text (message
) in SVN.
- Halten Sie die Regeln für den Umgang mit SVN ein.
- Halten Sie die Programmierrichtlinie für C und die Programmierrichtlinien für MATLAB® ein.
- Versehen Sie jedes Programm mit einem Header (Header Beispiel für MATLAB, Header Beispiel für C).
- Kommentiere Sie den Quelltext umfangreich.
Arbeitsergebnis in SVN: SVN Log
Tutorials
- Erste Schritte mit dem AlphaBot
- Erste Schritte mit der Arduino IDE
- HSHL-Wiki: Ultraschallsensor HC-SR04
Demos
→ Termine 1 2 3 4
→ zurück zum Hauptartikel: Informatik Praktikum 2