Halbsmartes Bad-Modul: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
Zeile 7: | Zeile 7: | ||
→ zurück zur Übersicht: [[:Kategorie:ProjekteET_MTR_BSE_WS2021|WS 21/22: Angewandte Elektrotechnik]] | → zurück zur Übersicht: [[:Kategorie:ProjekteET_MTR_BSE_WS2021|WS 21/22: Angewandte Elektrotechnik]] | ||
[[Datei:Logo.jpg|thumb|rechts|Das Halbsmarte Bad-Modul]] | |||
Version vom 6. Januar 2022, 13:33 Uhr
Autoren: Lukas Mücke & Dominik Sumkötter
Betreuer: Prof. Dr.-Ing. Ulrich Schneider
→ zurück zur Übersicht: WS 21/22: Angewandte Elektrotechnik
Einleitung
Unser Ziel ist es ein multifunktionales System zu entwickeln, dass allerlei Features rund ums Bett bietet. Dabei darf es gerade im Bezug auf eine Weckfunktion auch mal unangenehm und "böse" werden. Der Name soll daher auf einerseits auf den Einsatzbereich "Bett" und andereseits auf die unangenehmen Weckeigenschaften hindeuten. Darüber hinaus soll das System aber auch eine freundliche Seite haben und in gedämpften Licht den Bodenbereich ausleuchten, sobald nachts Bewegung detektiert wird.
Die wesentlichen Features
Folgende Aufgaben soll das Modul bewältigen:
1. Licht im Fußbereich einschalten
- Licht soll nur ab einer bestimmten Dunkelheit angehen.
- Licht soll bei dunkler Umgebung gedämpft und bei relativ heller Umgebung heller leuchten.
2. Wecken in verschiedenen Stufen
- Licht wird langsam heller, Licht blinkt, Farben wechseln von Blau nach Rot
- Ton wird dazu geschaltet, Lautstärke steigt
- Wecker soll über einen Taster deaktiviert weden.
Anforderungen
ID | Feature | Anforderung |
---|---|---|
1 | Design | Das Modul ist muss sowohl kompakt, als auch einfach zu montieren sein. Die Bauelemente (Arduino, Sensoren usw.) sollen vor z.B. Fußtritten geschützt sein. Außerdem darf das Modul beim Aufstehen nicht im Weg sein. |
2 | Fußbodenbeleuchtung | Das System registriert Bewegungen vor dem Bett und schaltet das Licht ein, wenn die Umgebung dunkel genug ist. Das Licht soll automatisch erlöschen, wenn längere Zeit keine Bewegung vor dem Sensor erfolgt. |
3 | Automatische Dimmung | Das System wählt eine unterschiedliche Lichtintensität, je nachdem wie dunkel es ist, um in völliger Dunkelheit nicht zu blenden und bei gedämpftem Licht trotzdem für bessere Sicht zu sorgen. |
4 | Wecksystem | Das Modul soll erst sanfte Weckversuche über optische Reize (heller werdendes Licht, blinken) starten und über die Zeit intensiver, und über auditive und optische Signale Wecken. |
5 | Bedienung | Die Weckzeit soll direkt am Modul eingestellt und abgelesen werden können. |
Funktionaler Systementwurf/Technischer Systementwurf
Wir haben uns gegen eine Sleep-Funktion entschieden, weil diese dem Konzept des "Bad" Moduls nicht gerecht wird. Schließlich soll es zuverlässig wecken und nicht ermöglichen lange im Bett zu bleiben. Gegen dieses Prinzip spricht auch ein Ausschalten des Weckers per Bewegungsmelder. Ein Abschalten des Weckers bei zu hoher Umgebungshelligkeit (Person bereits wach, oder aufgestanden) wurde weggelassen, da das Leuchten des Moduls selbst ein Abschalten verursachen könnte. Weiter wäre denkbar gewesen eine geschlossene Box für den Wecker herzustellen, die dann frei im Raum zu positionieren ist. Das hätte zum Vorteil gehabt, dass alle Kabel sicher im Gehäuse untergebracht wären. Eine Bodenbeleuchtung per Bewegungsmelder macht aber nur Sinn, wenn das Modul unter dem Bett angebracht wird und den Boden vor dem Bett beleuchtet und dort Bewegungen erfasst. Zur einfachen Unterbringung wurde dann entschieden, dass Modell so zu designen, wie es im CAD-Modell zu sehen ist.
-
Systementwurf des Bad-Modul
-
PAP des Bad-Modul
Komponentenspezifikation
Komponentenliste:
- Bewegungsmelder: HC-SR501
- Passiver Lautsprecher
- Kurzhubtaster 12x12x6mm
- LED-Ring: WS2812 (als Schauobjekt, in der Praxis eventuell 10m-Leuchtband)
- Fotowidertand
- DS1307 I2C RTC Modul (Uhrzeitmodul)
- Breadboard (830 Kontakte)
- Gehäuse Arduino Uno R3 (transparent)
Die Komponenten wurden so gewählt, dass sie a) auch nach dem Projekt noch nützlich sind und b) eine kostengünstige Umsetzung erlauben. Ein RGB-Leuchtband anstatt des LED-Rings wäre eindrucksvoll, aber auch teuer gewesen und nacher nicht mehr genutzt worden. Daher haben wir uns für den LED-Ring entschieden, der das Potential des Moduls ausreichend darstellt. Eine ähnliche Entscheidung wurde bezüglich der Taster getroffen. Es gibt beleuchtete und vandalismusgeschützte Taster, die das Modul optisch aufgewertet hätten, diese sind aber auch vergleichsweise kostenintensiv. Das Breadboard, dass natürlich viel zu lang für die Anwendung ist, wurde gewählt, da gleichwertige Boards in halber Größe im bevorzugten Shop nicht lieferbar waren. Auf ein spanendes Kürzen wurde verzichtet, da das Board auch nach dem Projekt noch anderweitig genutzt werden soll.
Umsetzung (HW/SW)
Hardware
Das Bad-Modul soll unkompliziert am Bett angebracht werden können. Hierfür wurde eine T-förmige Halterung mithilfe von Solidworks erstellt und per 3D-Druck realisiert. Bei der Konstruktion wurde das Prinzip "Form follows Function" angewand, damit das Modul nachher auch Problemlos anwendbar ist. Die Form des Moduls ist somit speziell auf die von uns ausgewählten Bauteile ausgelegt. Durch diese Konstruktionsmethodik gestaltete sich die Anbringung der Bauteile sehr einfach und es musste wenig nachgebessert werden am Modul.
Nach erfolgreichen Test der Komponenten und fertigem Aufbau der Schaltung auf dem Breadboard, wurden die einzelnen Bauelementen an der Halterung befestigt. Ursprünglich war geplant vandalismusgeschützte Schalter zu verwenden; diese Idee wurde aus Kostengründen verworfen.
Software
Zur Ansteuerung der Komponenten wurden folgende Bibliotheken genutzt:
- Wire von Arduino
- Adafruit_NeoPixel von "Phil "Paint Your Dragon" Burgess" (für Adafruit Industries)
- Time von Paul Stoffregen
- DS1307RTC von Paul Stoffregen
- LiquidCrystal I2C von Marco Schwartz
Grundsätzlich werden in einer Endlosschleife die verschiedenen Eingänge eingelesen:
- Taster A und B
- Bewegungsmelder
- Spannungsabfall am Photowiderstand
und über I2C die aktuelle Uhrzeit vom RTC-Modul eingelesen.
Anschließend wird passend zu den eingelesenen Werten, in verschiedenen if-Abfragen entschieden, welche Funktion aktiviert wird. Ist es zum Beispiel dunkel (geringer Wert am Photowiderstand) und der Bewegungsmelder reagiert, wird die Bodenbeleuchtung aktiviert. Die Helligkeit ergibt sich aus folgender Formel:
Mit der maximalen Helligkeit LHmax und der aus der Spannung am Photowiderstand errrechnete Wert UH für die Helligkeit der Umgebung.
Und aus dieser Formel ergibt sich, um welchen Betrag sich die Helligkeit erhöhen soll:
Step ist Schrittgröße mit der das Licht heller wird. DimTime , die Zeit, bis das Licht die maximale Helligkeit haben soll und DimPause die Zeit zwischen den Dimmschritten.
Nach definierter Zeit geht das Licht wieder aus, außer es wird weiter eine Bewegung detektiert. Falls das Licht in unter fünf Sekunden ausgehen würde, werden dann weitere fünf Sekunden bis zum Abschalten des Lichts addiert. Das Licht wird dann in gleicher Schrittweite runtergedimmt.
Wenn die Uhrzeit mit der eingestellten Weckzeit übereinstimmt, werden Weckmaßnahmen in fünf verschiedenen Intensitäten aktiviert:
- Langsames aufdimmen des Lichts (weißes Licht)
- Langsam blinkendes Licht (weißes Licht)
- Langsam blinkendes Licht und Signalton (weißes Licht)
- Langsam blinkendes Licht und Signalton (rotes Licht)
- Schnell wechselndes Licht in verschiedenen Farben und Signalton
Die einzelnen "Stages" werden auf dem LCD-Display ausgegeben.
Wenn der Wecker nach einer gewissen Weckdauer nicht deaktiviert wurde, geht er von selbst aus. Dies soll verhindern, dass der Wecker ewig weiter weckt, auch wenn zum Beispiel niemand zu Hause ist.
Mit den Tastern kann der Wecker aktiviert, bzw. deaktiviert werden und die Weckzeit eingestellt werden. Beim Einstellen der Weckzeit, wird erfasst, wie lange der Knopf gedrückt wird. Bei einmaliger Betätigung wird die Weckzeit um eine Minute erhöht. Bei längerer Betätigung um 10 Minuten und schließlich um 60 Minuten.
Komponententest
Es wurde für jede Komponente ein Testprogramm geschrieben, um die für das fertige Bad-Module notwendigen Funktionen zu testen. Anschließenden wurden die Komponenten an den Arduino angeschlossen und die Programme optimiert.
Anschließend wurden immer mehr Module zusammen angeschlossen und der finale Code um die entsprechenden Funktionen ergänzt, bis das gesamte Modul betriebsbereit war.
Ergebnis
Das Bad-Modul ist funktionsbereit und enthält alle Funktionen, die auf jeden Fall eingebracht werden sollten.
-
Vorderseite des Halbsmarten Bad-Moduls
-
Rückseite des Halbsmarten Bad-Moduls
Zusammenfassung
Lessons Learned
Es wurden folgende Kentnisse und Fähgikeiten vertieft, bzw. erlernt:
- Planung und Entwurf eines Projektes
- Projektmanagement
- Aufbau einer Schaltung
- Erstellen eines CAD-Modells für den 3D-Druck
- Programmierung eines Mikrocontrollers
Für einen weiteres Projekt sollte bereits zu Beginn stärker über das optische Erscheinungsbild des Endprodukts nachgedacht werden, gerade in Hinblick auf die Kabelführung hat sich zum Ende des Projekts keine vollständige Zufriedenheit eingestellt, während andere Mängel (zu langes Breadboard, Taster) durch ein höheres Budget einfach auzubessern wären.
Projektunterlagen
Projektplan
Projektdurchführung
YouTube Video
Hier können die Funktionen des Moduls angsehen werden:
Weblinks
Literatur
→ zurück zur Übersicht: WS 21/22: Angewandte Elektrotechnik