Objekttracking mit LiDAR: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
Zeile 1: | Zeile 1: | ||
Autoren: [[Benutzer:Ahmad Hassan|Ahmad Hassan]], [[Benutzer:Lihui Liu|Lihui Liu]] | Autoren: [[Benutzer:Ahmad Hassan|Ahmad Hassan]], [[Benutzer:Lihui Liu|Lihui Liu]] | ||
== Einleitung == | == Einleitung == | ||
Die Gruppe Hassan/Liu beschäftigt sich im Wintersemester 2020/2021 mit dem Thema Objekterkennung und Objekttracking mit dem Hokuyo LiDAR. Im Sommersemester wurde schon ein Arbeitskonzept dazu entworfen inkl. einem Signalflussplan sowie einem morphologischen Kasten. In dem WS20/21 soll eine Umsetzung dieses Arbeitskonzepts in C erfolgen. Zuerst kommt die Einbindung bzw. Einrichtung und Ansteuerung des LiDARs in C. Darauffolgend wird die Koordinatentransformation implementiert. Zum Testen des Schnittstellenkommunikationsprinzips wird auch eine Funktion programmiert, die innerhalb des ersten Monats des Semesters eine Dummy Objektliste erstellt, die an die DS1104 verschickt werden kann anhand von dem vom Team Heuer/Kruse entwickelten Kommunikationsframework. Zukünftig dient diese Funktion dem Versand der tatsächlichen, erfassten Objekte und ihrer Attribute. | Die Gruppe Hassan/Liu beschäftigt sich im Wintersemester 2020/2021 mit dem Thema Objekterkennung und Objekttracking mit dem Hokuyo LiDAR. Im Sommersemester wurde schon ein Arbeitskonzept dazu entworfen inkl. einem Signalflussplan sowie einem morphologischen Kasten. In dem WS20/21 soll eine Umsetzung dieses Arbeitskonzepts in C/C++ erfolgen. Zuerst kommt die Einbindung bzw. Einrichtung und Ansteuerung des LiDARs in C/C++. Darauffolgend wird die Koordinatentransformation implementiert. Zum Testen des Schnittstellenkommunikationsprinzips wird auch eine Funktion programmiert, die innerhalb des ersten Monats des Semesters eine Dummy Objektliste erstellt, die an die DS1104 verschickt werden kann anhand von dem vom Team Heuer/Kruse entwickelten Kommunikationsframework. Zukünftig dient diese Funktion dem Versand der tatsächlichen, erfassten Objekte und ihrer Attribute. Danach kommt eine Implementierung der Segmentierung. Allerdings wird hier die Successive Edge Following genommen statt der Connected Component Clustering im Gegensatz zu dem aus dem SS20/21 resultierenden Konzept. Anschließend erfolgten die Objektbildung, Datenzuordnung und das Gating. An letzter Stelle findet die Programmierung des Kalman-Filters zur Objektverfolgung und Schätzung Attribute wie Geschwindigkeit und Beschleunigung der verfolgten Objekte statt. | ||
Eine detaillierte Beschreibung der erforderlichen, fachlichen Grundlagen und des entwickelten Konzepts ist im [https://wiki.hshl.de/wiki/index.php?title=Objekterkennung_mit_Hokuyo_LiDAR&oldid=65410: Objekterkennung mit Hokuyo LiDAR] zu finden. | Eine detaillierte Beschreibung der erforderlichen, fachlichen Grundlagen und des entwickelten Konzepts ist im [https://wiki.hshl.de/wiki/index.php?title=Objekterkennung_mit_Hokuyo_LiDAR&oldid=65410: Objekterkennung mit Hokuyo LiDAR] zu finden. | ||
Version vom 12. Februar 2021, 21:22 Uhr
Autoren: Ahmad Hassan, Lihui Liu
Einleitung
Die Gruppe Hassan/Liu beschäftigt sich im Wintersemester 2020/2021 mit dem Thema Objekterkennung und Objekttracking mit dem Hokuyo LiDAR. Im Sommersemester wurde schon ein Arbeitskonzept dazu entworfen inkl. einem Signalflussplan sowie einem morphologischen Kasten. In dem WS20/21 soll eine Umsetzung dieses Arbeitskonzepts in C/C++ erfolgen. Zuerst kommt die Einbindung bzw. Einrichtung und Ansteuerung des LiDARs in C/C++. Darauffolgend wird die Koordinatentransformation implementiert. Zum Testen des Schnittstellenkommunikationsprinzips wird auch eine Funktion programmiert, die innerhalb des ersten Monats des Semesters eine Dummy Objektliste erstellt, die an die DS1104 verschickt werden kann anhand von dem vom Team Heuer/Kruse entwickelten Kommunikationsframework. Zukünftig dient diese Funktion dem Versand der tatsächlichen, erfassten Objekte und ihrer Attribute. Danach kommt eine Implementierung der Segmentierung. Allerdings wird hier die Successive Edge Following genommen statt der Connected Component Clustering im Gegensatz zu dem aus dem SS20/21 resultierenden Konzept. Anschließend erfolgten die Objektbildung, Datenzuordnung und das Gating. An letzter Stelle findet die Programmierung des Kalman-Filters zur Objektverfolgung und Schätzung Attribute wie Geschwindigkeit und Beschleunigung der verfolgten Objekte statt. Eine detaillierte Beschreibung der erforderlichen, fachlichen Grundlagen und des entwickelten Konzepts ist im Objekterkennung mit Hokuyo LiDAR zu finden.
Eine Auflistung der Aufgaben zu den entsprechenden Meilensteinen ist unten ersichtlich.
- Meilenstein 3:
- Implementierung der Einbindung und Ansteuerung des Hokuyo LiDAR
- Implementierung der Koordinatentransformation
- Testdokumentation der Koordinatentransformation
- Versand einer Dummy-Objektliste an DS1104
- Implementierung der Segmentierung (Connected Component Clustering)
- Erstellen eines PAPs zum L-Shape Fitting Algorithmus
- Meilenstein 4:
- Implementierung des L-Shape Fitting Algorithmus
- Implementierung des Kalman Filters
- Attribute schätzen
- Versand der echten Objektlisten an die dSpace-Karte
- Dokumentation im Wiki
Anforderungen
Pflichten
Die vorgenommenen Pflichten zeigen die folgenden Abbildungen:
Funktionaler Systementwurf / Technischer Systementwurf
Inbetriebnahme und Ansteuerung des LiDARs
Koordinatentransformation
Erstellung einer Dummy Objektliste zum Testen des Schnittstellenkommunikationsprinzips für LiDAR Daten
Segmentierung: Successive Edge Following
Objektbildung
Objekttracking: Kalman Filter
Programmierung (Hier pro Modul Code-Snippets und Erklärung)
Inbetriebnahme und Ansteuerung des LiDARs
Koordinatentransformation
In diesem Artikel beschreibt die Umsetzung der Koordinatentransformation in Visual Studio.
Hier gehts zu Artikel Koordinatentransformation
Erstellung einer Dummy Objektliste zum Testen des Schnittstellenkommunikationsprinzips für LiDAR Daten
In diesem Artikel beschreibt die Erstellung einer Dummy Objektliste in Visual Studio.
Hier gehts zu Artikel Erstellung einer Dummy Objektliste zum Testen des Schnittstellenkommunikationsprinzips für LiDAR Daten
Segmentierung: Connected Component Clustering
Objektbildung
In diesem Artikel wird die Durchführung der Objektbildung erklärt.
Hier gehts zu Artikel Durchführung der Objektbildung
Objekttracking: Kalman Filter
Komponententest
Zusammenfassung
Ausblick
Link zum Quelltext in SVN
Literaturverzeichnis
→ zurück zum Gruppenartikel: SDE-Team_2020/21
→ zurück zum Hauptartikel: SDE Praktikum Autonomes Fahren