Farbseperator: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
Zeile 52: | Zeile 52: | ||
== Umsetzung (HW/SW) == | == Umsetzung (HW/SW) == | ||
[[Datei:Farbseperator schaltung.jpg|400px|thumb|right|Schaltung des Farbseparators <ref> Eigenes Dokument </ref>]] | |||
{| class="mw-datatable" | |||
!colspan="2"|Pinout | |||
|- | |||
|Pin 1 || Vcc (5 V DC) | |||
|- | |||
|Pin 2 || Signal an digitalen Pin und über 10 kΩ an Vcc | |||
|- | |||
|Pin 3 || Not used | |||
|- | |||
|Pin 4 || GND | |||
|} | |||
== Komponententest == | == Komponententest == |
Version vom 19. Januar 2021, 14:08 Uhr
Autoren: Noah Greis, Richard Stanislawski
Betreuer: Prof. Dr. Göbel
→ zurück zur Übersicht: WS 20/21: Fachpraktikum Elektrotechnik (MTR)
Einleitung
Dieses Projekt ist Bestandteil des GET Fachpraktikums des Bachelorstudienganges Mechatronik im 5. Semester und wird hier genauer beschrieben. Der "Farbseperator" soll mit zwei Servomotoren und einem Farbsensor ausgestattet werden. Die Motoren werden von dem programmierten Arduino Mikrocontroller gesteuert und richten sich je nach erkannter Farbe aus. Dabei wird das zu sortierende Material in unterschiedliche Behälter separiert.
Anforderungen
Der "Farbseperator" soll im allgemeinen die folgenden Funktionen erfüllen.
- separates Aufnehmen zur Farberkennung
- eindeutige Farberkennung
- präzise Verteilung in vorgesehene Behälter durch Sortierrutsche
Funktionaler Systementwurf/Technischer Systementwurf
Hauptbestandteil des Prozesses ist der Arduino Uno, welcher durch Rückmeldungen des Sensors (Farbsensor), die Servomotoren ansteuert. Dabei ist die Ausrichtung von der Rückmeldung des Sensors abhängig.
Dies ist ein fertiges CAD - Modell der Maschine.
Komponentenspezifikation
Komponente | Beschreibung | Bild |
---|---|---|
Arduino NANO | Der Microcontroller NANO spielt in diesem Projekt die Hauptrolle. Er verarbeitet eingehende Signale des Farbsensors und steuert durch Pulsweitenmodulation die 2 Servomotoren an. Durch seine geringen Abmaße eignet sich diese Modell hervorragend für Projekte mit kleinem Bauraum. | |
MicroServo SG90 | Der Servomotor SG90 ist in der Lage auf den Grad° genau seine Position zu bestimmen. Dadurch lassen sich dynamische Funktionen des Farbseperator präzise steuern. Auch hier sind die kleinen Abmaße von großem Vorteil. | |
Farberkennungssensor TCS230/TCS3200 | Der Farbsensor detektiert dank seiner 8x8 Fotodioden-Matrix farbiges Licht. Die aufgenommenen Daten werden durch einen Strom-Frequenz-Wandler in eine Frequenz umgewandelt welche dann der erkannten Lichtfrequenz entspricht. 4 helle Leuchtdioden erhellen gleichmäßig das auszulesene Objekt. |
Umsetzung (HW/SW)
Pinout | |
---|---|
Pin 1 | Vcc (5 V DC) |
Pin 2 | Signal an digitalen Pin und über 10 kΩ an Vcc |
Pin 3 | Not used |
Pin 4 | GND |
Komponententest
Servo Motor SG90
Die Positionen in Grad [°] sind bei dem SG90 bereits vorbestimmt. Somit reichte es aus , die groben Positionen von 0° und 90° zu bestimmen, um einerseits die Startposition und anderseits die Umdrehungsrichtung zu bestimmen.
Farbsensor TCS230/TCS3200
Das testen des Farbsensors ist recht einfach. Man ließt die Daten vom NANO aus und erhält die RG(B) Anteile zu der jeweils detektierten Farbe des bekannten Testobjektes. Der blaue Wert war zwar fehlerhaft, jedoch genügten die Rot- und Grünwerte aus. Für die Nutzung als Farbseperator reicht dies jedoch keinesfalls aus.
Da die Farben einerseits von ihren RG(B)- Anteilen sehr nahaneinander liegen und anderseits ihre Werte stark vom Umgebungslicht abhängen, ist eine generelle Auswertung für uns nicht möglich gewesen. Nach jedem Ortswechsel mussten die maximalen Rot- und Grünwerte ausgelesen und über eine Balkendiagramm aufgetragen werden. Somit ließen sich dann Grenzbereiche für die Farben festlegen. Diese variieren stark und sind oft sehr klein.
In dieser Abbildung sind die gemessenen Maximalwerte des Rot- und Grünanteils. Der Bereich eine Farbe erstreckte sich vom eigenen Maximalwert zu dem welcher als nächstes zuvor lag.
Ergebnis
Auch sehr ähnliche Farben wie z.B. Rot und Orange konnten dank der Bereichsermittlung separiert werden. Auch wenn sich anfangs Bereiche zum Teil durch schwankende Werte überlappten, ließ sich das Problem mit geringfügigen Bereichswertänderungen in den Griff bekommen.
Dank dieser Taktik, ließen sich Kalibrierung des Farbsensors an verschiedenen Standorten verhältnismäßig schnell durchführen.
Zusammenfassung
Durch genaue Kalibrierung ließ sich das Projekt "Farbseparator" gut umsetzen. Das System nimmt farbige Dragées auf und sortiert diese erfolgreich nach Farbe.
Lessons Learned
Man sollte immer die Zeit abschätzen die man für die Umsetzung eines Projektes o.ä. benötigt. Davon sollte man dann die doppelte Menge ins einen Zeitplan einberechnen.
Projektunterlagen
Projektplan
Projektdurchführung
YouTube Video
Weblinks
Literatur
→ zurück zur Übersicht: WS 20/21: Fachpraktikum Elektrotechnik (MTR)