Multisensorsysteme: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Zeile 63: Zeile 63:
|-
|-
| 7 || Ein Stapler bewegt sich in einer Lagerhalle und der Fahrtweg wird aufgenommen || [[Benutzer:Nils_Busemann|Nils Busemann]]
| 7 || Ein Stapler bewegt sich in einer Lagerhalle und der Fahrtweg wird aufgenommen || [[Benutzer:Nils_Busemann|Nils Busemann]]
|-
| 8 || Abstandsregeltempomat gesteuertes Auto fährt auf der Autobahn || [[Benutzer:Florian_Mueller|Florian Mueller]]
|}
|}



Version vom 16. November 2017, 08:44 Uhr

Dozent: Prof. Schneider

Lernergebnisse/Kompetenzen

Die Studierenden können geeignete Methoden zur Multisensordatenfusion und zum Objekttracking auswählen und umsetzten.

Inhalte

  • Einführung Multisensorsysteme
  • Auffrischung der statistischen Grundlagen (z.B. Satz von Bayes)
  • Einführung in die Schätztheorie
  • Zustandsraum-Modell
  • Kalman-Filter
  • Verfahren zur Multisensor-Datenzuordnung
  • Verfahren zur Multisensor-Datenfusion
  • Verfahren zum Objekttracking


Erwartungen an Ihre Lösungen

  • Berücksichtigen Sie die in den Veranstaltungen genannten Leitregeln für wissenschaftliches Arbeiten.
  • Nutzen Sie Matlab Simulation und ggf. praktische Versuche, um Ihre Ergebnisse zu belegen.
  • Beachten Sie das Kursmaterial in Moodle und SVN.
  • Archivieren Sie Ihre Daten nachhaltig im dafür vorgesehenen SVN Ordner.
  • Nutzen Sie SVN während des Semesters als Versionierungstool.
  • Halten Sie sich beim Erstellen von Quelltext an die Programmierrichtlinien für Matlab.
  • Erleichtern Sie die Verwendung Ihrer Quellen durch Kommentare, Header, Hilfedatei und ReadMe.txt.

Prüfung

  • In der Prüfung wird Ihnen ein praktisches Problem präsentiert, welches Sie in einem gesteckten Zeitrahmen zu lösen haben.
  • Befolgen Sie die Anweisungen auf dem Prüfungsbogen.
  • Sichern Sie Ihre Ergebnisse in dem dafür vorgesehenen Ordner in SVN.
  • Die Bewertung erfolgt an den hier aufgeführten Kriterien
    • Vollständigkeit
    • Ergebnisqualität
    • Quelltext-Effizienz
    • Quelltext-Lesbarkeit
    • Nachhaltigkeit
  • Abgabetermine für die Teilprüfungen
  1. Kalman-Filter: 22.11.2017
  2. Komplementärfilter: 13.01.2018
  • Ein Beispiel liegt für Sie im Ordner Klausurvorbereitung. Orientieren Sie sich an der Programmstruktur.

Themen - Kalman-Filter

# Thema Bearbeiter
1 Kugel rollt auf Teppich und verschwindet kurzzeitig in einem Karton Prof. Schneider
2 Hexbug wird im Videobild verfolgt Prof. Schneider
3 Autonomer mobiler Roboter mit verrauschten Sensor Signalen Phillip Blunck
4 Fahrzeug fährt in Tunnel und verliert GPS Tom Niehaus
5 Verfolgung Ardumower mit GroundTruth System Marcel Kreuer
6 RobiTobi wird über Kamera getrackt und Bild fällt kurz aus Jan Auf der Landwehr
7 Ein Stapler bewegt sich in einer Lagerhalle und der Fahrtweg wird aufgenommen Nils Busemann
8 Abstandsregeltempomat gesteuertes Auto fährt auf der Autobahn Florian Mueller

FAQ

  • Können Sie Beispiele für das zu modellierenden Modell nennen?
    • Ein Auto steht, beschleunigt, fährt mit konstanter Geschwindigkeit in einer Ebene und verzögert wieder bis zum Stillstand.
    • Der schräge Wurf eines Balls.
    • Ein Flummi hüpft bis zum Stillstand.
    • Ein Ball rollt über einen Rasen.
    • Eine Kugel taucht in Wasser ein.

Siehe auch

Literatur

  • Bar-Shalom, Y.: Multitarget-Multisensor Tracking : Advanced Applications. Norwood: Artech House, 1990
  • Bar-Shalom, Y.; Li, X.-R.: Estimation and Tracking : Principles, Techniques and Software. Norwood: Artech House, 1993
  • Blackman, S. S.: Multiple-Target Tracking with Radar Applications. Norwood: Artech House, 1986
  • Blackman, S. S.; Popoli, R.: Design and Analysis of Modern Tracking Systems. Norwood: Artech House, 1999
  • Brooks, R. R.; Iyengar, S. S.: Multi-Sensor Fusion : Fundamentals and Applications with Software. Upper Saddle River : Prentice-Hall, 1998
  • Kim, P: Kalman-Filter für Einsteiger. Leipzig: CreateSpace, 2016. ISBN 978-1-50272-378-9
  • Mitchell, H.B.: Multi-Sensor Data Fusion: An Introduction. Berlin Heidelberg: Springer, 2010. ISBN 978-3540714637
  • Raol, J. R.: Multi-Sensor Data Fusion with MATLAB. Crc Pr Inc, 2009. ISBN 978-1439800034
  • Sanjeev, B.; u.a: Beyond the Kalman Filter: Particle Filters for Tracking Applications. DSTO, 2004. ISBN 1-58053-631-x
  • Subhash, C.; u.a.: Fundamentals of Object Tracking. Cambridge University Press, 2011. ISBN 978-0521876285
  • Thomas, C.: Sensor Fusion and Its Applications. URL: www.sciyo.com