JetRacer: Spurführung mit künstlicher Intelligenz: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 62: Zeile 62:


== [[Understand the existing system]] ==
== [[Understand the existing system]] ==
== [[Optimize AI for speed and robustness in the lab]] ==
== [[Optimize AI for speed and robustness in the lab]] ==
== [[Improve the controller (e.g., PD controller)]] ==
== [[Improve the controller (e.g., PD controller)]] ==

Version vom 18. Oktober 2024, 14:30 Uhr

Abb. 1: JetRacer AI Pro von Waveshare

Autor: Evrard Leuteu
Art: Projektarbeit
Starttermin: TBD
Abgabetermin: TBD
Betreuer: Prof. Schneider

Einführung

Installation der virtuellen Maschine VirtualBox

Aufgabenstellung

  1. Einarbeitung in das bestehende Framwework
  2. Optimierung der KI für den Rundkurs im Labor Autonome Systeme (Geschwindigkeit, Robustheit).
  3. Optimierung des Reglers (z. B. PD-Regler)
  4. Nutzung von MATLAB zum Anlernen des Jetson Nano.
  5. Drive the JetRacer in the right lane counterclockwise with the gamepad controller. Limit the speed via Software to a maximum (e. g. 1 m/s).
  6. Take a video while driving a lap with MATLAB® using a MATLAB®-script.
  7. Load the pretrained NN.
  8. Train the pretrained NN with MATLAB® with a MATLAB®-App (GUI) by clicking the desired path in the images.
  9. Option: Use classic lane tracking algorithms to teach the NN automatically.
  10. Write a PD-contoller that uses the NN to drive in the right lane. Program this in MATLAB® and let it run on the JetRacer-GPU using GPU Coder.
  11. Goal: the car should drive autonomously several laps in the right lane as fast as possible.
  12. Dokumentation nach wissenschaftlichem Stand im HSHL-Wiki

Anforderungen

Das Projekt erfordert Vorwissen in den nachfolgenden Themengebieten. Sollten Sie die Anforderungen nicht erfüllen müssen Sie sich diese Kenntnisse anhand im Rahmen der Arbeit anhand von Literatur/Online-Kursen selbst aneignen.

  • Erfahrungen mit Künstlicher Intelligenz/Deep Learning
  • Programmierung in C++, Python
  • Dokumentenversionierung mit SVN

Anforderungen an die wissenschaftliche Arbeit

Projektplan

Abb.2: Projektplan


SVN-Repositorium

Getting started

Lesen Sie zum Einstieg diese Artikel


Understand the existing system

Optimize AI for speed and robustness in the lab

Improve the controller (e.g., PD controller)

Use MATLAB to train on Jetson Nano

Drive JetRacer counterclockwise using a gamepad, limiting speed (e.g., 1 m/s)

Record a lap using a MATLAB script

Load and retrain a pretrained NN with a MATLAB GUI

Optionally, automate NN training with classic lane tracking

Develop a PD controller using the NN, coded in MATLAB for JetRacer GPU

Mögliche Folgethemen

  • Kreuzungserkennung
  • Vorfahrterkennung
  • Hinderniserkennung und Umfahrung
  • Schildererkennung

Nützliche Artikel

Literatur

Schreiber, C.: KI-gestützte „Follow-Me“-Funktion am Beispiel des JetRacer. Mittweida, Hochschule Mittweida – University of Applied Sciences, Fakultät Ingenieurwissenschaften, Masterarbeit, 2023. URL: [1]


→ zurück zum Hauptartikel: Studentische Arbeiten