Implementierung von FastSLAM 2.0 und Tests in Outdoor-Simulationsumgebungen: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
 
(7 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 81: Zeile 81:
== Nützliche Artikel ==
== Nützliche Artikel ==
*[[Navigation_eines_FTF_mit_ROS2| Y. Schmidt: Navigation eines FTF mit ROS2]]
*[[Navigation_eines_FTF_mit_ROS2| Y. Schmidt: Navigation eines FTF mit ROS2]]
*[[ROS2 Tutorial]]
*[[ROS2 Tutorial| P. Ajay: ROS2 Tutorial]]
*[[Webots|A. Talovic: Webots]]
 
== Nützliche Links ==
*[https://wiki.ros.org/rqt_graph Rqt Graph]
*[https://docs.nav2.org/ ROS2 Navigation Stack (NAV2)]
*[https://docs.ros.org/en/humble/Tutorials.html ROS2 Humble Tutorials]
*[https://cyberbotics.com/doc/reference/index Webots Documentation]
*[https://www.youtube.com/watch?v=2CWHfbuEbAY&list=PLt69C9MnPchlWEV5AEhfT2HajlE2SJ55V Webots Tutorials (Videos)]
*[https://ubuntu.com/tutorials/install-ubuntu-desktop#13-additional-installing-ubuntu-alongside-windows-with-bitlocker Additional installing Ubuntu alongside windows with Bitlocker activated]




----
----
→ zurück zum Hauptartikel: [[Studentische_Arbeiten|Studentische Arbeiten]]
→ zurück zum Hauptartikel: [[Studentische_Arbeiten|Studentische Arbeiten]]

Aktuelle Version vom 24. Juni 2024, 00:11 Uhr

Abb. 1: FastSLAM 2.0
Autor: Benjamin Dilly
Modul: Bachelorarbeit, MTR-B-2-7.01
Starttermin: TBD
Abgabetermin: TBD
Prüfungsform: Modulabschlussprüfung als schriftliche Dokumentation (Bachelorarbeit) im Umfang von 30 bis 60 Seiten Textteil und Präsentation (15 Minuten) zzgl. Kolloquiumsdiskussion (15-30 Minuten).
Betreuer: Prof. Dr.-Ing. Schneider, Tel. 806; Stefan Arndt, HANNING ELEKTRO-WERKE GmbH & Co. KG
Mitarbeiter: Marc Ebmeyer, Tel. 847

Einleitung

Algorithmen zur Simultanen Positionsbestimmung und Kartierung (Engl.: Simultaneous Localization and Mapping, SLAM) sind ein wichtiger Bestandteil in der Mobilen Robotik. Da heutzutage meist hochauflösende Laserscanner eingesetzt werden, haben sich Scan-Matching basierende SLAM-Algorithmen für die Indoor-Anwendung durchgesetzt. Jedoch scheitern diese Algorithmen in unstrukturierten und spärlich belegten Umgebungen (kaum bis keine Wände, geringe Anzahl an Messpunkte durch den Laserscanner), wie es im Outdoor-Bereich der Fall ist. Eine Möglichkeit, um in dieser Umgebung zu navigieren, ist die Verwendung eines Landmarken-basierenden SLAM-Verfahrens. Eines dieser Verfahren ist FastSLAM 2.0, das markante Umgebungsmerkmale (Features) mithilfe einer Gaußverteilung modelliert. Die verschiedenen Möglichkeiten der Trajektorie als auch der gesamten Karte werden durch Partikel abgebildet (siehe [1]) Da in einem industriellen Umfeld sowohl Indoor als auch Outdoor-Navigation verlangt wird, sollen beide SLAM-Algorithmen bei Hanning zum Einsatz kommen.


Zielsetzung

Ziel der Arbeit ist die Implementierung von FastSLAM 2.0 in modernem C++ (>= 17) unter Verwendung des Robot Operating System 2 (ROS2) Humble und das Testen in verschiedenen Outdoor-Simulationsumgebungen.

Eigenschaften der Umgebung können hierbei folgende sein:

  • Bodenbeschaffenheit (flach oder uneben)
  • Wenige bis viele Features
  • Langer oder kurzer Weg bis zum nächsten Indoor-Bereich
  • Features verschwinden oder tauchen auf

Von dem Softwaremodul FastSLAM 2.0 werden besondere Anforderungen verlangt:

Feature-Management

Features sind häufig nicht statisch, d.h. sie können über die Zeit aus der Umgebung verschwinden, werden versetzt oder neue kommen dazu. Das Softwaremodul soll damit automatisiert umgehen können.

Konfidenzwert der Lokalisierung

Die Lokalisierung mittels FastSLAM 2.0 soll probabilistisch bewertet werden. Hierbei können verschiedene Kriterien zum Einsatz kommen, wie z. B.: Anzahl der erkannten Features, Abweichung der Messung zu den Features, Kovarianz der Features, Verteilung der Partikel etc. Die Motivation hierbei ist es, mithilfe des Confidence-Werts eine automatische Umstellung von Indoor- und Outdoor-SLAM durchführen zu können.

Parametrierung

Anzahl der Partikel, Ungenauigkeit des Antriebsstrang (Odometrie), verwendete Reichweite des Laserscanners (usable Range), Rastergröße der Karte

Schnittstelle (ROS2)

  • Input: Odometrie, Laserscanner
  • Output: Occupancy Grid Map (Rasterkarte), globale Position bzw. Transformation, Confidence-Wert

Aufgabenstellung

  • Einarbeitung in ROS2
  • Implementierung des Softwaremoduls FastSLAM 2.0
  • Testen in geeigneter Simulationsumgebungen (z. B. WeBots)
  • Testen in geeigneten Umgebungen
  • Auswertung der Ergebnisse unter Berücksichtung der Outdoor-Navigation
  • Dokumentation im HSHL-Wiki


Anforderungen an die wissenschaftliche Arbeit

SVN-Repositorium

Getting started

Lesen Sie zum Einstieg diese Artikel

Erweiterungsdokument

In dem Erweiterungsdokument zur Bachelorarbeit, können die Informationen zur Einrichtung eines Dual-Boot-Systems, eine grundlegende Einführung in die Funktionsweise von ROS, eine Einführung in die Programmierung mit ROS2 Humble, C++ und Visual Studio Code, als auch eine Einführung in die Programmierung mit Visual Studio Code, C++ und CMake gefunden werden.

Quellen

  1. Montemerlo, M.; Thrun, S., u.a.: FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. In: Proceedings of IJCAI, 2003, S. 1151-1156

Nützliche Artikel

Nützliche Links



→ zurück zum Hauptartikel: Studentische Arbeiten