Versuchsprotokoll

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen

Autor: Prof. Dr.-Ing. Schneider

Einleitung

Dieser Artikel beschreibt die förmlichen Erwartungen an die Dokumentation eines Versuchs (Versuchsprotokoll). Ein Versuchsprotokoll ermöglicht es ein durchgeführtes Experiment nachzuvollziehen und zu wiederholen. Das Protokoll muss sachlich formuliert und wie in Tabelle 1 beschrieben formatiert sein.

Tabelle 1: Abschnitte eines Versuchprotokolls
# Abschnitt Inhalt
0 Deckblatt Name, Datum, Titel, Praktikum, Gruppe
1 Einführung Thema/Fragestellungen, Hypothese, verwendete Geräte und Materialien
2 Versuchsaufbau Dokumentation des Versuchsaufbaus: Schaltplan, Schaltungsaufbau/Anschlussplan mit Fritzing, Foto des Aufbaus ggf. mit Beschriftung
3 Versuchsdurchführung Beschreiben Sie den Ablauf des Versuchs, damit andere Wissenschaftler*innen den Versuch anhand dieses Protokolls nachvollziehen und wiederholen können.
4 Versuchsbeobachtung Messwerte
5 Auswertung Deutung, Erklärung oder Interpretation. ggf. einschließlich Fehleranalyse

Deckblatt

Autor: Prof. Ulrich Schneider
Praktikum: Mechatronik, Elektrotechnik Fachpraktikum
Gruppe: MTR 1.0
Datum: 09.10.2020
Versuch: Rapid-Control-Prototyping mit Arduino: Abstandsmessung mit Sharp IR

Einführung

Thema/Fragestellung: Messung der Entfernung mit dem Sensor Sharp GP2-0430K

Hypothese: Die Entfernung lässt sich im Bereich von 4 cm bis 50 cm fehlerfrei messen.

Tabelle 2: Materialliste
# Anzahl Material
1 1 PC mit MATLAB/Simulink R2022b
2 1 Sensor Sharp GP2-0430K
3 1 Arduino Uno R3
4 1 Streckbrett
5 5 Jumper Kabel, männlich/männlich, 20 cm

Versuchsaufbau

Abb. 1: Schaltplan
Abb. 2: Anschlussplan
Abb. 3: Foto des Versuchsaufbaus

Der Versuchsaufbau wird durch einen Schaltplan (Abb. 1), Anschlussplan (Abb. 2) und Foto des Aufbaus (Abb. 3) dokumentiert.

Versuchsdurchführung

Abb. 4: Simulink-Modell

Das Modell zur Datenverarbeitung wurde gemäß Abb. 4 in Simulink aufgebaut. Die Messdaten wurden aufgezeichnet. Ein Video der Versuchsdurchführung findet sich hier.

Modelleinstellungen: Arduino Uno, Solver: Fixed-step, discrete, Abtastrate: 0,001 s

Versuchsbeobachtung

Abb. 5: Darstellung des Rohsignals des IR-Entfernungssensors (rote Kurve)
Abb. 6: Darstellung von dynamischen Messwerten des IR-Entfernungssensors

Das Signal des Sensors weist alle 40 ms systematische Ausreisser auf (vgl. Abb. 5, rote Kurve).

Auswertung

Die Messhypothese wurde verworfen. Der Sensor weist systematische Messwertausreisser auf.

Die Ausreisser lassen sich mit einem Signalfilter eliminieren. Hierzu eignet sich ein Rangordnungsfilter (z. B. Median-Filter). Das Filter wird hierzu auf eine Fensterbreite von 30 Werten eingestellt. Das zufriedenstellende Filterergebnis für statische Werte zeigt Abb. 5 als blaue Kurve. Es konnte mit dynamische Werten verifiziert werden (vgl. Abb. 6). Das Datenblatt ([2, S. 6]) belegt die Messungen und bezeichnet die Messausreisser als "instabile Ausgabe" für maximal 5 ms alle 40 ms. Mit 50 Werten erhöht sich die Filterwirkung, es entsteht jedoch ein Delay von 10 ms. Mit 10 Werten ist die Filterwirkung zu gering.

Nützliche Links


→ zurück zum Hauptartikel: Anforderungen an eine wissenschaftlich Arbeit