Ziel der Regressionsanalyse am häugigsten ist es, Beziehung zwischen einer abhängigen und einer oder mehreren unabhängigen Variable festzustellen, um ein Vorhersagemodell zu erstellen. Wenn nun zusätzliche Werte x ohne zugehörigen Wert y vorliegen, dann kann das angepasste Modell zur Vorhersage des Wertes von y verwendet werden.
Polynomische Regression
Im Falle der polynomischen Regression vom Grad 2 wird die Funktion
unter der Bedingung gesucht, dass die Funktion
der Summe der Quadrate der Abstände der tatsächlichen y-Werte von berechneten -Werten ein Minimum hat.
Zur Bestimmung der Konstanten in Gleichung (1) werden die partiellen Ableitungen , und gleich null gesetzt, um jeweils das minimum zu erhalten:
Partielle Ableitung nach :
dividiert durch ergibt:
Partielle Ableitung nach :
dividiert durch ergibt:
Partielle Ableitung nach :
dividiert durch ergibt:
Es entsteht wieder ein lineares Gleichungssystem in drei Variablen ,dessen Lösung die optimalen Konstanten liefert:
Offline Modell
Eingabe-Variablen:
x und y: Koordinaten des Fahrzeugschwerpunktes in Weltkoordinaten
phi: Fahrzeugrichtung in Weltkoordinaten.
Z: die Bahnpunkte
Ausgabe-Variablen:
a,b,c: Koeffizienten einer Parabel, welche die Fahrbahn im Fahrzeug-Koordinatensystem bestmöglich nähert
Die Punkte werden bestimmt, die von (x,y) einen Abstand kleiner d haben. Die Punkte werden angenommen, die (x,y) immer maximal d/2 von der Laborbahn entfernt ist.
Durch die angenommenen Punkte mit polynomischen Regression werden a,b,c beschrieben.
Dann könte man ein Vorhersagemodell für Fahrzeug erhalten.
Online Modell
Eingabe Variablen werden durch Kamera erhilten
Ausgabe-Variablen:
a,b,c: Koeffizienten einer Parabel, welche die Fahrbahn im Fahrzeug-Koordinatensystem bestmöglich nähert