ASF Gruppe A4 - SoSe18

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen

Autoren und Gruppenmitglieder: Rina Muçaj, Jan Pinter und Levin Baumeister

Name des Roboters

Einleitung

Die Aufgabe bestand darin ein Lego Mindstorms NXT Fahrzeug zu konstruieren und zu programmieren, sodass dieses nach dem gegebenen Regelwerk in der Lage ist autonom einer Fahrspur auf dem Boden zu folgen. Dies geschieht im Rahmen des Informatikpraktikum II, SS 18 mit Professor Ulrich Schneider. Weitere Informationen unter Autonomes Fahren SoSe18.

Gruppenmitglieder und ihre Aufgaben

Rina Muçaj

  • Konstruktion des Roboters
  • Bearbeitung der inhaltlichen Fragen der jeweiligen Praktikumstermine
  • Erstellung des Videos
  • Verfassen des HSHL-Wiki-Artikels

Jan Pinter

  • Konstruktion des Roboters
  • Entwicklung der Fahrstrategie mit PAP-Designer
  • Umsetzung der Fahrstrategie in Quellcode
  • Erstellung des Videos

Levin Baumeister

  • Konstruktion des Roboters
  • Entwicklung der Fahrstrategie mit PAP-Designer
  • Erstellung des Bauplans
  • Verfassen des HSHL-Wiki-Artikels

Verwendete Softwaretools

Verwendete Hardware

  • LEGO MINDSTORMS NXT Education (Set 9797)[10]
  • LEGO Education Resource Set (Set 9695)[11]
  • NXTCam-v4, Vision Subsystem - Camera for NXT or EV3[12]

Das Lego Set 9797 bildet zusammen mit dem Lego Set 9695 die Grundlage des Roboters, inklusive der Motoren, der Steuerungseinheit (NXT Brick) und der Basis-Sensoren (Tastsensor). Damit der Roboter jedoch in der Lage ist autonom zu fahren, wird die NXTCam-v4 (Vision Subsystem - Camera for NXT or EV3) verwendet.


Die genaue Zusammensetzung der Hardware ist der Bauanleitung und dem Modell (zu öffnen mit LEGO Digital Designer 4.3, enthalten ist ebenfalls eine Bauanleitung) zu entnehmen: Datei:SS18 A4 Anleitung.pdf, Datei:SS18 A4 Modell.zip.

Animation des Zusammenbaus
Animation des Zusammenbaus

Bei der Entwicklung der Hardwarezusammensetzung standen folgende Punkte im Vordergrund:

  • Leicht zu wartende und solide Bauweise
  • Direkt angetriebene Lenkachse
  • Kleinere Räder an der Front für bessere Beweglichkeit
  • Verstellbare Kamerahalterung
  • Leichte Anschließbarkeit


Parameter Wert
Fahrzeuglänge 390 mm
Fahrzeugbreite 175 mm
Spurweite vorne 130 mm
Spurweite hinten 160 mm
Achsabstand 200 mm
Max. Radeinschlagswinkel links/ rechts 40°


Fahrstrategie

Bei der Entwicklung der Fahrstrategie standen folgende Punkte in Vordergrund:

  • Geregelte Querlenkung
  • Fahrgeschwindigkeit an Lenkung angepasst
  • Einhalten der StVO

PAP Diagramme

Motor A: Lenkmotor
Motor B: Antriebsmotor

Umsetzung in NXC und MATLAB

Die Implementierung der ersten Praktikumsaufgaben wurde in MATLAB umgesetzt, später wurde, wie auch schon im Informatikpraktikum I - WS17/18, NXC verwendet, da mit dieser Programmiersprache eine einfache Einbindung der Kamera möglich ist und keine konstante Verbindung zu einem PC mit MATLAB benötigt wird.

Die grundsätzliche MATLAB-Befehle wurden den MATLAB-Tutorials MATLAB Courses[13] entnommen.

NXT spezifische MATLAB-Befehle siehe LEGO MINDSTORMS NXT Support from MATLAB[14], RWTH - Mindstorms NXT Toolbox for MATLAB - Toolbox Documentation[15] und interne Hilfefunktion der Toolbox.

NXC-Befehle siehe Einführung in die Programmierung mit NXC[16], Buch „Roboter programmieren mit NXC für LEGO Mindstorms NXT“[17], Programmierung LEGO NXT Roboter mit NXC [18] und NXC Programmer's Guide [19]. (In diesen Dokumenten befindet sich auch eine Übersicht der Sensoren und Aktoren).

MATLAB-Quellcode aus Praktikumstermin 1, Aufgabe 1.5:

motor1 = NXTMotor(motor);
motor1.SpeedRegulation   = false;
motor1.Power             = geschwindigkeit;
motor1.TachoLimit        = laenge;
motor1.ActionAtTachoLimit = 'Brake';

motor1.SendToNXT();

disp('Berechnung beendet');
fprintf('\n');

tacho=0;
strecke=0;
tic;
i=0;
% monitor during movement
  data = motor1.ReadFromNXT();
  while(1)
      i=i+1;
      data = motor1.ReadFromNXT(); % refresh
      Zeit(i)=toc;
      tacho=-data.TachoCount;
      Strecke(i)=tacho*1
      if i>1
          dt = Zeit(i)-Zeit(i-1);
          ds = Strecke(i)-Strecke(i-1);
          Geschwindigkeit(i)=ds/dt;
      else
          Geschwindigkeit(i)=0;
      end
  
 if Strecke(i) > 2000
    motor1.Stop('off');
    break;
 end;
 end
  
%% Plot erstellen
%Fenster wird erstellt
figure(1);
      subplot 211
      plot(Zeit,Strecke,'r.-');
      title('s-t-Diagramm');
      xlabel('Zeit in Sekunden');
      ylabel('Strecke in cm');
            subplot 212
      plot(Zeit,Geschwindigkeit,'b.-');

% Grafiküberschrift
title('123');
% x-Achse Beschriftung
xlabel('456');
% y-Achse Beschriftung
ylabel('789'); 

NXC-Quellcode aus Praktikumstermin 5 , Aufgabe 5.3 :

const byte camPort  =  IN_1;

#define CAMADDR     0x02
#include "nxtcamlib-default.nxc"

task main ()
{
	int cam;
	Wait(100);

  // Camera initialisieren
  cam = NXTCam_Init(camPort, CAMADDR);
  Wait(100);
  //Line Tracking Modus
  NXTCam_SendCommand(camPort, CAMADDR,'L');
  Wait(100);
  //Tracking einschlaten
  NXTCam_SendCommand(camPort, CAMADDR,'E');
  Wait(100);

  //LCD-Anzeige leeren
  ClearScreen();
  //Text ausgeben
  TextOut(0, LCD_LINE1, "Verbindung aktiv" );
  TextOut(40, LCD_LINE2, "..." );
  Wait(5000);
  }
}

YouTube-Video

Video zum Roboter der Gruppe A4

Video-Beschreibung:
Herausgeber: Rina Muçaj, Levin Baumeister und Jan Pinter
Hochschule: Hochschule Hamm-Lippstadt
Studiengang: Mechatronik 2. Semester
Projektkurs: Informatikpraktikum II (Gruppe A4)
Betreuer: Prof. Dr. Ing.-Schneider
Musik: Epic - Royalty Free Music[20]
Praktikumsziel: Konstruktion und Programmierung eines LEGO-Mindstorms zur autonomen Spurführung in den Programmiersprachen NXC und MATLAB

Zusammenfassung

Lerneffekt

  • Programmierung eines mechatronischen Systems
  • Vertiefung der Programmierkenntnisse mit der Sprache C und MATLAB
  • Zusammenhänge zwischen den Bauteilen (Sensoren, Aktoren) verstehen
  • Erfahrungen mit dem Einsatz von verschiedenen digitalen Filtern
  • Erfahrung mit Bild- und Videobearbeitungsprogrammen

Erfolg

Der Roboter hat erfolgreich am Praktikum teilgenommen, er hat die zweitgrößte Distanz zurückgelegt.

Literaturverzeichnis

  1. MATLAB - https://de.mathworks.com/products/matlab.html
  2. RWTH - Mindstorms NXT Toolbox for MATLAB - http://www.mindstorms.rwth-aachen.de/
  3. Bricx Command Center - http://bricxcc.sourceforge.net/
  4. NXC - https://de.wikipedia.org/wiki/Not_eXactly_C
  5. LEGO Digital Designer 4.3 - http://ldd.lego.com/de-de
  6. PapDesigner - http://friedrich-folkmann.de/papdesigner/Hauptseite.html/
  7. muvee Reveal Encore 2018 - https://www.muvee.com/
  8. Captura Version 6.0.1 - http://mathewsachin.github.io//
  9. Hilfeseite des Wikimedia-Projekts - http://meta.wikimedia.org/wiki/Help:Editing/de
  10. http://robotsquare.com/2012/02/18/understanding-nxt-versions/
  11. http://www.nxtprograms.com/help/parts/9797.html
  12. http://www.mindsensors.com/ev3-and-nxt/14-vision-subsystem-camera-for-nxt-or-ev3-nxtcam-v4
  13. MATLAB Courses - https://matlabacademy.mathworks.com/?s_cid=learn_MLacad_ban
  14. LEGO MINDSTORMS NXT Support from MATLAB - https://de.mathworks.com/hardware-support/lego-mindstorms-matlab.html
  15. RWTH - Mindstorms NXT Toolbox for MATLAB - Toolbox Documentation - http://www.mindstorms.rwth-aachen.de/trac/wiki/Documentation
  16. Einführung in die Programmierung mit NXC - http://www.brgkepler.at/~robotik/home/documents/BRG_Kepler_Tutorial_NXC.pdf
  17. Buch "Roboter programmieren mit NXC für LEGO Mindstorms NXT" - https://www.daniel-braun.com/buch/roboter-programmieren-mit-nxc/
  18. Programmierung LEGO NXT Roboter mit NXC - https://gym-leibnitz.lima-city.de/robotik/wp-content/uploads/2016/01/NXC_Tutorial_DE.pdf
  19. NXC Programmer's Guide - http://bricxcc.sourceforge.net/nbc/nxcdoc/nxcapi/index.html
  20. Epic - Royalty Free Music - https://www.bensound.com/royalty-free-music/track/epic


Alle verwendeten Bildmaterialien auf dieser Seite wurden eigenständig erstellt.


→ zurück zum Hauptartikel: Informatikpraktikum 2 SoSe18