Sound Sensor Modul KY-038: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
[[Datei:Bild_Sound_Sensor.JPG|500px|thumb|rechts|Sound Sensor Modul <ref> https://www.az-delivery.de/products/mikrofon-modul-klein </ref>]]
[[Datei:Bild_Sound_Sensor.JPG|500px|thumb|rechts|Sound Sensor Modul <ref> https://www.az-delivery.de/products/mikrofon-modul-klein </ref>]]
==Einleitung==
Die Lehrveranstaltung Sensortechnik gehört zum Studienschwerpunkt System Design Engineering im 5. Semester des Studienganges Mechatronik. In diesem Artikel wird ein Sound Sensor angeschlossen in Betrieb genommen und ausgewertet.


=== Aufgabe===
=== Aufgabe===
Vertiefend zu den Vorlesungen besteht die Aufgabe einen beliebigen Sensor mithilfe eines Arduino Uno Boards in Betrieb zu nehmen und in diesem Artikel den Weg vom Sensor über den elektrischen Aufbau und die Programmierung bis hin zu brauchbaren Messergebnissen zu beschreiben. In diesem Semester ersetzt diese Hausarbeit die Klausur für diese Lehrveranstaltung.<br>
Vertiefend zu den Vorlesungen der Lehrveranstaltung Sensortechnik aus dem Schwerpunkt System Design Engineering besteht die Aufgabe einen beliebigen Sensor mithilfe eines Arduino Uno Boards in Betrieb zu nehmen und in diesem Artikel den Weg vom Sensor über den elektrischen Aufbau und die Programmierung bis hin zu brauchbaren Messergebnissen zu beschreiben. <br>
Ich habe mich für das Spund Sensor Modul entschieden. Zum einen habe ich mit dem Modul bisher nicht gearbeitet und ich finde es spannend wie der Sensor das nichtelektrische Signal der Lautstärke in ein elektrisch messbares Signal umwandelt. <br>
In diesem Semester ersetzt diese Hausarbeit die Klausur für diese Lehrveranstaltung. <br>
Bei dem Sensor handelt es sich um das Modul KY 038. Auf dem oben dargestellten Foto ist das Sound Sensor Modul abgebildet. <br>
 
==Einleitung==
Die Lehrveranstaltung Sensortechnik gehört zum Studienschwerpunkt System Design Engineering im 5. Semester des Studienganges Mechatronik.
<br><br>
In diesem Artikel wird im Folgenden ein Sound Sensor Modul (KY-038 beschrieben). Auf dem oben dargestellten Foto ist das Sound Sensor Modul abgebildet. Auf diesem Modul ist der eigentliche Sensor montiert. Dies ist ein sogenanntes Kondensatormikrofon, das mit eintreffenden Schallwellen die Kapazität des Kondensators ändert. Auf dem Modul ist dann bereits eine Auswerteschaltung realisiert, die im Folgenden ebenfalls erläutert wird. <br>


== Technische Daten ==
== Technische Daten ==
Zeile 27: Zeile 29:


== Prinziperklärung ==
== Prinziperklärung ==
Bei dem Sound Sensor Modulhandelt es sich um ein Modul, dass aus 3 Bereichen besteht. Erstens das Kondensatormikrofon, dass die Schallwellen aufnimmt, zweitens ein Potentiometer, mit dem ein Schwellwert für die Empfindlichkeit eingestellt werden kann und drittens einer LED, die den digitalen Ausgang des Moduls nutzt und leuchtet wenn der Schwellwert überschritten ist.<br>
Bei dem Sound Sensor Modul handelt es sich um ein Modul, dass aus 3 Bereichen besteht. Erstens das Kondensatormikrofon, dass die Schallwellen aufnimmt, zweitens ein Potentiometer, mit dem ein Schwellwert für die Empfindlichkeit eingestellt werden kann und drittens einer LED, die den digitalen Ausgang des Moduls nutzt und leuchtet wenn der Schwellwert überschritten ist.
Im folgenden werde ich das Messprinzip eines Kondensatormikrofons erläutern. Ein Kondensatormikrofon betsht wie der Name bereits sagt aus einem Kondensator. Es beruht auf dem Prinzip der variablen Kapazität. In dem Mikrofon sind 2 Platten verbaut. Eine Platte ist fixiert, eine Platte ist beweglich. Der kleine Abstand zwischen den beiden Platten bestimmt die Kapazität dieses Plattenkondensators. Eine Spannung lädt diesen Kondensator auf. Treffen nun die Schallwellen auf die bewegliche Platte, ändert sich der Abstand zwischen den Kondensatorplatten und somit auch die Kapazität.
<br> Formel einfügen
<br>
Mithilfe der Formel für den Plattenkondensator wird somit eine veränderte Spannung gemessen, die am Analogen Ausgang des Bauteils abgegriffen werden kann.
 
Messprinzip des Soiund Moduls erläutern
kondensator etc.


===Auswahl eines Primärsensors===
===Auswahl eines Primärsensors===
Wie funktioniert der Sensor? <br>
Wie funktioniert der Sensor? <br>
Der eigentliche Sensor ist ein Kondensatormikrofon.
Das Mikrofon besteht aus 2 Platten, die den Plattenkondensator bilden. Eine Platte davon ist fest fixiert, die andere Platte ist leicht beweglich. Wenn nun Schallwellen auf die bewegliche Platte treffen, verändert sich der Abstand der platten zueinander. Wenn sich der Plattenabstand ändert, ändert sich auch die Kapazität des Kondensators, und somit ergibt sich auch eine Änderung der Spannung.<br>
Die Spannung berechnet sich wie folgt.<br>
<math>U = \frac{Q}{C}</math> mit <math>C = \frac{A\cdot \varepsilon}{d} </math> ergibt sich <math>U = \frac {Q \cdot d}{\varepsilon \cdot A}</math> <br>
: <math>U</math> – Spannung am Kondensator
: <math>Q</math> – im Kondensator gespeicherte Ladung (für kurze Zeiträume als konstant angenommen)
: <math>C</math> – Elektrische Kapazität der Kapsel
: <math>d</math> – Abstand von Membran und Gegenelektrode
:<math>\varepsilon</math> – Elektrische Feldkonstante
: <math>A</math> – Feldwirksame Fläche zwischen Membran und Gegenelektrode
Eine Änderung von d hat somit eine proportionale Änderung von U in Folge.
Welche Rohsignale liefert der Sensor?<br>
Welche Rohsignale liefert der Sensor?<br>
Als Rohsignal liefert der Sensor Spannungswerte zwischen 0 nd 5V diese werden in 1024 Schritte unterteilt, sodass eine theoretische Genauigkeit von XXXXX zustande kommmt.
 
Als Rohsignal liefert der Sensor somit eine Spannung zwischen 0 und 5V, da der Sensor an 5V angeschlossen ist.
 
Dieses Signal könnte direkt vom Arduino angegriffen werden, sodass eine theoretische Genauigkeit von ca. 0.005V entsteht. Dies muss dann aber entsprechend von der Software in brauchbare Messwerte umgerechnet werden, wodurch die Genaugkeit sinkt.
 
 
Mithilfe der Formel für den Plattenkondensator wird somit eine veränderte Spannung gemessen, die am Analogen Ausgang des Bauteils abgegriffen werden kann.
 


== Equipment==
== Equipment==

Version vom 23. November 2020, 15:18 Uhr

Sound Sensor Modul [1]

Aufgabe

Vertiefend zu den Vorlesungen der Lehrveranstaltung Sensortechnik aus dem Schwerpunkt System Design Engineering besteht die Aufgabe einen beliebigen Sensor mithilfe eines Arduino Uno Boards in Betrieb zu nehmen und in diesem Artikel den Weg vom Sensor über den elektrischen Aufbau und die Programmierung bis hin zu brauchbaren Messergebnissen zu beschreiben.
In diesem Semester ersetzt diese Hausarbeit die Klausur für diese Lehrveranstaltung.

Einleitung

Die Lehrveranstaltung Sensortechnik gehört zum Studienschwerpunkt System Design Engineering im 5. Semester des Studienganges Mechatronik.

In diesem Artikel wird im Folgenden ein Sound Sensor Modul (KY-038 beschrieben). Auf dem oben dargestellten Foto ist das Sound Sensor Modul abgebildet. Auf diesem Modul ist der eigentliche Sensor montiert. Dies ist ein sogenanntes Kondensatormikrofon, das mit eintreffenden Schallwellen die Kapazität des Kondensators ändert. Auf dem Modul ist dann bereits eine Auswerteschaltung realisiert, die im Folgenden ebenfalls erläutert wird.

Technische Daten

Tabelle mit den technischen daten

Beschreibung der Pins am Sound Sensor Modul

PIN Beschreibung
+ Versorgungsspannung (5V, 3.3V)
G GND
A0 Analog signal output Pin
D0 Digital signal output Pin

Prinziperklärung

Bei dem Sound Sensor Modul handelt es sich um ein Modul, dass aus 3 Bereichen besteht. Erstens das Kondensatormikrofon, dass die Schallwellen aufnimmt, zweitens ein Potentiometer, mit dem ein Schwellwert für die Empfindlichkeit eingestellt werden kann und drittens einer LED, die den digitalen Ausgang des Moduls nutzt und leuchtet wenn der Schwellwert überschritten ist.

Auswahl eines Primärsensors

Wie funktioniert der Sensor?
Der eigentliche Sensor ist ein Kondensatormikrofon. Das Mikrofon besteht aus 2 Platten, die den Plattenkondensator bilden. Eine Platte davon ist fest fixiert, die andere Platte ist leicht beweglich. Wenn nun Schallwellen auf die bewegliche Platte treffen, verändert sich der Abstand der platten zueinander. Wenn sich der Plattenabstand ändert, ändert sich auch die Kapazität des Kondensators, und somit ergibt sich auch eine Änderung der Spannung.
Die Spannung berechnet sich wie folgt.

mit ergibt sich

– Spannung am Kondensator
– im Kondensator gespeicherte Ladung (für kurze Zeiträume als konstant angenommen)
– Elektrische Kapazität der Kapsel
– Abstand von Membran und Gegenelektrode
– Elektrische Feldkonstante
– Feldwirksame Fläche zwischen Membran und Gegenelektrode

Eine Änderung von d hat somit eine proportionale Änderung von U in Folge.



Welche Rohsignale liefert der Sensor?

Als Rohsignal liefert der Sensor somit eine Spannung zwischen 0 und 5V, da der Sensor an 5V angeschlossen ist.

Dieses Signal könnte direkt vom Arduino angegriffen werden, sodass eine theoretische Genauigkeit von ca. 0.005V entsteht. Dies muss dann aber entsprechend von der Software in brauchbare Messwerte umgerechnet werden, wodurch die Genaugkeit sinkt.


Mithilfe der Formel für den Plattenkondensator wird somit eine veränderte Spannung gemessen, die am Analogen Ausgang des Bauteils abgegriffen werden kann.


Equipment

Verwendete Software

Arduino IDE
Fritzing

Verwendete Komponenten

Messkette

Signalvorverarbeitung

Sollen Messwerte oder vorverarbeitete Daten übertragen werden?
Wie lässt sich eine Vorverarbeitung umsetzen?
Wird eine Kennlinie eingesetzt? Wenn ja, wie wird diese kalibriert?

Analog-Digital-Umsetzer

Wie werden die analogen Signale umgesetzt?
Welcher ADU kommt zum Einsatz?
Welche Gründe sprechen für diesen ADU? Alternativen?

Bussystem

Wird ein Bussystem zwischen Sensor und Mikrocontroller eingesetzt?
Wenn ja, wie funktioniert dieses Bussystem?


Digitale Signalverarbeitung

Welche Verarbeitungsschritte sind notwendig?
Welche Filter werden angewendet?
Bestimmen Sie Auflösung, Empfindlichkeit und Messunsicherheit des Sensors.

Hardware

Datenblatt

Schaltung für die Inbetriebnahme

Hier sieht man die Schaltung für die Inbetriebnahme des Sensors mit den beiden Leds, die jeweils leuchten wenn es still im raum ist oder wenn es laut ist.
Die Schaltung wurde mit dem Programm Fritzing erstellt.

Hardwareaufbau des Sound Sensors [2]



















Software

Bewertung der Sensordaten

Welche Fehler treten in welchem Verarbeitungsschritt auf?
Stellen Sie die Messunsicherheit bzw. das Vertrauensintervall dar.


Zusammenfassung

Video

Literatur


→ zurück zum Hauptartikel: Sensortechnik WS 20/21