Projekt 92: Speedy-Tempomessgerät

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Abb. 1: Speedy das Tempomessgerät

Autoren: Hermine Makou Lontsi, Marie Noel Mbogni
Betreuer: Prof. Schneider

→ zurück zur Übersicht: WS 18/19: Angewandte Elektrotechnik (BSE)

Thema

Um die Sicherheit von Kindern auf ihrem Schulweg steht es nicht zum Besten. Dies haben Geschwindigkeitsmessungen des ADAC vor 25 Schulen in zehn Bundesländern ergeben. Dabei wurde die zulässige Höchstgeschwindigkeit von Tempo 30 von mehr als 60 Prozent der Autofahrer überschritten. Insgesamt wurden 43 828 Fahrzeuge gemessen, 26 329 davon waren zu schnell unterwegs. Der Rekordwert von 96 km/h wurde vor einer Grundschule in Hamburg festgestellt.

Aufgabe

Messen Sie die Geschwindigkeit vorbeifahrender Fahrzeuge und visualisieren Sie den Messwert als Zahl und als Smiley.

Erwartungen an die Projektlösung

  • Anforderungen (vgl. Abb. 1)
    • Messung der Geschwindigkeit bis 100km/h
    • Reichweite: 50m
    • Hochleistungs-LED-Anzeige in gelb und rot
    • rot bei überhöhter Geschwindigkeit, blinkende Anzeige
    • Zahlenhöhe 30cm, 2-stellig
    • Smiley-Funktion: ☹ ☺
    • Hochformat ca. 84x63x18cm
  • Recherchieren Sie bestehende Projektlösungen.
  • Planen Sie den Systemaufbau
  • Wählen Sie einen geeigneten Geschwindigkeitssensor aus (z.B. Stereo-Video, Radar, Laser). Tipp: Achten Sie auf den Messbereich der Sensoren. Ultraschall hat beispielsweise nicht genügend Reichweite.
  • Beschaffung der Bauteile
  • Aufbau des Systems
  • Software: Objektbildung, Tracking, Filterung (z.B. Kalman-Filter)
  • Testen Sie das System umfangreich vor einer Grundschule
  • Machen Sie ein tolles Videos, welches die Funktion visualisiert.
  • Wissenschaftliche Dokumentation
  • Live Vorführung während der Abschlusspräsentation
Abb. 2: Blitzerfoto

Kür: Machen Sie bei Verwendung eines videobasierten System ein "Blitzerfoto" (vgl. Abb. 2), welches Sie inkl. Maximalgeschwindigkeit, Datum und Uhrzeit speichern und später auslesen.

Einleitung

Im Rahmen der Masterstudium Business and System Engineering an der HSHL im Fach Angewandt Elektrotechnik geht es darum einerseits vier Praktikum zu absolvieren und andererseits ein Projekt zu machen. In diesem Projekt geht es darum ein Geschwindigkeitsmessgerät zu entwickeln. Jedoch die Geschwindigkeitsmessungen können in unterschiedlicher Weise vorgenommen werden. Neben der klassischen Bestimmung der Geschwindigkeit aus Weg und Zeit kann die Geschwindigkeit mit Tachometern, Fahrradcomputern, Induktionsschleifen, Laserpistolen oder durch Radarmessungen ermittelt werden. Um die Anforderungen für dieses Projekt zu erfüllen wird ein Ultraschallsensor angewendet.

Ultraschallsensor


Abbildung 1: HC-SR04

Das Ultraschall Modul HC-SR04 ist in der Lage, Objekte berührungslos zu erkennen und ihre Entfernung zum Sensor zu messen. Der Abstandssensor eignet sich für die Entfernungsmessung im Bereich zwischen ca. 2cm und 3m, wobei die Auflösung im Idealfall 3mm beträgt. Er wird bei einer Spannung von 5 V bei einer Stromaufnahme weniger als 2 mA versorgt . Außerdem besteht der Sensor aus einem Ultraschall-Lautsprecher und einem darauf abgestimmten Ultraschall-Mikrofon. Zunächst sendet der Lautsprecher einen Schallimpuls aus. Trifft der Schallimpuls auf einen Gegenstand, wird er reflektiert. Das so entstehende Echo wird vom Sensor wieder aufgenommen. Der Zeitspanne zwischen dem Senden und dem Empfangen des Schallimpulses ermöglicht, die Entfernung zum Objekt zu berechnen . Einsatzgebiete von Ultraschallsensoren sind die Robotik, Hinderniserkennung, Entfernungsmessung oder Füllstandanzeiger.

Funktionsweise einen Ultraschallsensor Projekt92jpg.jpeg

[[1]]

Messvorgang beim Ultraschallsensor HC-SR04

Die eigentliche Messung wird über den Anschluss Trigger (Pin 2) gestartet. Der Messvorgang der Entfernung geschieht selbständig durch eine fallende Flanke (TTL-Pegel) am Trigger-Eingang (Pin 2) für mindestens 10µs und diese wird in ein PWM Signal umgewandelt. Nach ungefähr 250µs wird vom Ultraschallsensor ein 40 kHz Burst – Signal für eine Dauer von 200 µs gesendet. Im Anschluss daran geht der Echo-Ausgang (Echo, Pin 3) sofort auf den High-Pegel und der Ultrasachallsensor wartet auf den Empfang des akustischen Echos. Sobald ein Echo detektiert wird, fällt der Ausgang wieder auf Low. Die gemessene Entfernung ist proportional zur Echo-Puls-Weite am Ausgang. Eine weitere Messung kann erst 20ms nach der Triggerung stattfinden. Falls jedoch kein Echo empfangen wird, bleibt der Ausgang für insgesamt 200ms auf dem High-Pegel und zeigt so den Misserfolg an. Der Ultrasachallsensor wartet danach auf die nächste fallende Flanke am Triggereingang (Pin 2) und die Messung beginnt vom Neuen neu . Die gemessene Entfernung kann durch die folgende Formel berechnet werden: Entfernung = (Schallgeschwindigkeit * Laufzeit) /2 [m, s] Der Faktor 2 kommt hinzu, weil das Signal den doppelten Weg zurücklegt: hin zum Objekt und wieder zurück.

Abbildung 2:HC-SR04 Timing Diagramm

[[2]]

Projektplan

Um die Projekt rechtzeitig zu bearbeiten, wurde ein Projektplan erstellt. Durch die Überschreitung mit anderen Projekt wird bei manchen Aufgaben eine Verspätung ergeben. Und durch Mangel von Ressourcen und Zeit, wird das Projekt nicht im Ganzen bearbeiten.

Projektplan

Projekt

BOM

Eine Stückliste (Bill of Material, BOM), welche die einzelnen Komponenten auflisten, die für die Realisierung des Projekts notwendig werden, wurde erstellt.


Systemaufbau

Für die Realisierung des Projekts wird ein Schaltplan, welcher die Zusammenschaltung der einzelnen Komponenten zeigt, erzeugt. Somit konnte über die Software ‚Fritzing ‘ die Hardware-Schaltung simuliert werden. Auf dem Steckbrett wurden die Bestandsteile eingesetzt nämlich ein Arduino Uno, Zwei LEDs (Rot und Grün), Drei Widerstände von 220 Ohm, ein Potentiometer, ein LCD-Display sowie ein Radarsensor. Die Kurzbezeichnung LED ist die Abkürzung für "Light Emitting Diode", was auf Deutsch "Licht emittierende Diode" bedeutet. LED sind Leuchtdioden die, elektrische Energie in Licht umwandeln . Um die LEDs zu steuern wurden zwei digitale Ausgangskanäle des Arduino Board (Pins 6) für LED Rot und (Pins 7) für LED Grün benutzt. Durch programmieren wird High (6V oder 7V) oder Low (Ground) geschaltet. Da ein LED bei 5V zerstört werden kann, muss ein Vorwiderstand in der Schaltung integriert werden und dieser soll bei 5V, 220Ohm betragen. Die Ausgabe der Messung an einen PC ist zwar einfach aber auch unflexibel deswegen wird ein LCD-Display verwendet um die Werten darzustellen. Für die Helligkeit der Schrift wird ein Drehwiderstand in die Schaltung eingebaut. Außerdem wird ein Widerstand (220Ohm) für die Hintergrundbeleuchtung angeschlossen. Dadurch dass die Software ‚Fritzing ‘ noch kein Radarsensor hat, wurde ein IC mit Drei Anschlüsse genau wie der verwendete Radarsensor benutzt.

Auf die folgenden Bilder lässt sich die Schaltung genau betrachten.

Steckplatine_Projekt92
Schaltplan_Projekt92

Projektdurchführung

Ergebnis

Zusammenfassung

Lessons Learned

Projektunterlagen

YouTube Video

Weblinks

Literatur

--- → zurück zur Übersicht: WS 18/19: Angewandte Elektrotechnik (BSE)