Projekt 48: LED Taschenlampe: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
KKeine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 9: Zeile 9:
= Aufgabe =
= Aufgabe =
Die Aufgabe bestand darin, ein LED-Upgrade für eine Taschenlampe auf Basis eines Artikels vom Januar 2015 aus der Zeitschrift c‘t Make zu erstellen.  
Die Aufgabe bestand darin, ein LED-Upgrade für eine Taschenlampe auf Basis eines Artikels vom Januar 2015 aus der Zeitschrift c‘t Make zu erstellen.  
Die Taschenlampe soll mit einem Mikrocontroller versehen werden, der sich so programmieren lässt, dass die Taschenlampe über eine Duo-LED die Statusanzeige der Batterie anzeigt und über einen Taster verschiedene Modi wählbar sind. Darüber hinaus regelt der Mikrocontroller, wann die LED in den Low- oder Stand-By-Modus wechseln soll und weitere kleinere Einstellungen.
Die Taschenlampe soll mit einem Mikrocontroller versehen werden, der sich so programmieren lässt, dass die Taschenlampe über eine Duo-LED den Ladestatus der Batterie anzeigt und über einen Taster verschiedene Modi wählbar sind. Darüber hinaus regelt der Mikrocontroller, wann die LED in den Low-Light- oder Stand-By-Modus wechseln soll und weitere kleinere Einstellungen.


== Erwartungen an die Projektlösung ==
== Erwartungen an die Projektlösung ==
Zeile 50: Zeile 50:
== Projektplan ==
== Projektplan ==


Der Projektplan veranschaulicht die einzelnen Arbeitsvorgänge im Groben und stellt ihre zeitliche Dauer dar. So kann man erkennen, welche Aufgabe wie viel Zeit in Anspruch genommen hat.
Der Projektplan veranschaulicht die einzelnen Arbeitsvorgänge im Groben und stellt ihre zeitliche Dauer dar. So kann man erkennen, welche Aufgabe, wie viel Zeit in Anspruch genommen hat.


[[Datei:48_LED-Taschenlampe_Projektplan.png|400px|thumb|left|Abbildung 1: Projektplanung]]
[[Datei:48_LED-Taschenlampe_Projektplan.png|400px|thumb|left|Abbildung 1: Projektplanung]]
Zeile 91: Zeile 91:
Als Ausgangsperipherie dient dann die Power-LED rechts in der Schaltung.
Als Ausgangsperipherie dient dann die Power-LED rechts in der Schaltung.
Der Schaltplan wurde daraufhin mit dem Programm Multisim realisiert und anschließend in das Programm Ultiboard (Abbildung 3: Schaltung) übertragen.
Der Schaltplan wurde daraufhin mit dem Programm Multisim realisiert und anschließend in das Programm Ultiboard (Abbildung 3: Schaltung) übertragen.
Für die Power-LED wurde zudem ein Adapter entworfen, der auf die alte Glühlampenfassung gesetzt wird und einen Kühlkörper beinhaltet, der die Wärme abführt. Für den Taster und die Status-Duo-LED wurden zwei Bohrungen an der Seite der Fassung vorgenommen.
 
Die simulierte Schaltung ist anschließend auf eine Lochrasterplatine übertragen und aufgelötet worden. Für den Controller ist eine Fassung verbaut, sodass dieser leicht entnehmbar ist, um ihn zum Beispiel zu Flashen
Für die Power-LED wurde ein Adapter entworfen, der auf die alte Glühlampenfassung gesetzt wird und einen Kühlkörper beinhaltet, der die Wärme abführt. Für den Taster und die Status-Duo-LED wurden zwei Bohrungen an der Seite der Fassung vorgenommen.
Die Verdrahtung der Platine ist in dieser Abbildung zu sehen.
Die simulierte Schaltung ist anschließend auf eine Lochrasterplatine übertragen und aufgelötet worden. Die Verdrahtung der Hauptplatine ist in Abbildung 5 zu sehen.
Für die externen Bauteile sind darüber hinaus Pfostenstecker benutzt worden, um sie besser befestigen zu können.
Für den Controller ist eine Fassung verbaut, sodass dieser leicht entnehmbar ist, um ihn zu Flashen. Zum Flashen wurde dafür ein weiterer Adapter entworfen, der die entsprechenden Pin-Belegungen des Controllers mit einem USB-UART-Wander verbindet.
Für die externen Bauteile sind darüber hinaus Pfostenstecker benutzt worden, um sie einfacher kontaktieren zu können.


==Erläuterung Schaltplan==
==Erläuterung Schaltplan==
Zeile 100: Zeile 101:
Der Schaltplan besteht prinzipiell aus einer Stromversorgung, einem Mikrocontroller, den Bedienelementen und einem Step-Up-Converter.
Der Schaltplan besteht prinzipiell aus einer Stromversorgung, einem Mikrocontroller, den Bedienelementen und einem Step-Up-Converter.
Auf der linken Seite  des Mikrocontrollers findet man die Bedienelemente (Taster) zum Ein- und Ausschalten der Power-LED, sowie die Anzeige durch die Rot-Grün Duo-LED.
Auf der linken Seite  des Mikrocontrollers findet man die Bedienelemente (Taster) zum Ein- und Ausschalten der Power-LED, sowie die Anzeige durch die Rot-Grün Duo-LED.
Da die Power-LED eine hohe Betriebsspannung benötigt, benötigt man einen Step-Up-Converter. Dieser befindet sich auf der rechten Seite und ist in Abbildung 6: Step-Up-Converter vereinfacht dargestellt. Es handelt sich um eine Spule in Reihe mit einer Diode. Außerdem enthält die Schaltung einen MOSFET (hier als Schalter dargestellt) und einen Kondensator.
Da die Power-LED eine hohe Betriebsspannung benötigt, benötigt man einen Step-Up-Converter. Dieser befindet sich auf der rechten Seite und ist in Abbildung 6 vereinfacht dargestellt. Es handelt sich um eine Spule in Reihe mit einer Diode. Außerdem enthält die Schaltung einen MOSFET (hier als Schalter dargestellt) und einen Kondensator.


[[Datei:Step-Up-Converter.png|200px|thumb|right|Abbildung 6: Step-Up-Converter]]
[[Datei:Step-Up-Converter.png|200px|thumb|right|Abbildung 6: Step-Up-Converter]]

Version vom 4. Februar 2016, 15:42 Uhr

Dieser Wiki-Beitrag ist Teil eines Projektes, welches im Rahmen vom Fachpraktikum Elektrotechnik im 5. Semester Mechatronik absolviert wurde. Ziel des Beitrags ist es, eine nachhaltige Dokumentation zu schaffen, welche die Ergebnisse festhält und das weitere Arbeiten am Projekt ermöglicht.

Autoren: Robin Kirsch, Marcus Irmer

Betreuer: Prof. Schneider


Aufgabe

Die Aufgabe bestand darin, ein LED-Upgrade für eine Taschenlampe auf Basis eines Artikels vom Januar 2015 aus der Zeitschrift c‘t Make zu erstellen. Die Taschenlampe soll mit einem Mikrocontroller versehen werden, der sich so programmieren lässt, dass die Taschenlampe über eine Duo-LED den Ladestatus der Batterie anzeigt und über einen Taster verschiedene Modi wählbar sind. Darüber hinaus regelt der Mikrocontroller, wann die LED in den Low-Light- oder Stand-By-Modus wechseln soll und weitere kleinere Einstellungen.

Erwartungen an die Projektlösung

  • Lesen Sie den Artikel in c‘t Make: 1/2015 (S. 38ff).
  • Planen Sie den Aufbau
  • Beschaffen Sie die Bauteile
  • Realisierung des Aufbaus
  • Machen Sie ein spektakuläres Video, welche die Funktion visualisieren.
  • Test und wiss. Dokumentation
  • Live Vorführung während der Abschlusspräsentation


Schwierigkeitsgrad

Anspruchsvoll (**)

Projekt LED-Taschenlampe

Verwendete Bauteile

  • 1x Hochleistungs-LED, 9 - 12V
  • 1x Strangkühlkörper
  • 1x Duo-LED rot/grün
  • 1x Mikrocontroller LPC810M021FN8, 8DIP, 32 Bit
  • 2x DIL8 Fassung für den Mikrocontroller
  • 1x Spannungsregler LP2950-3.3V
  • 1x Leistungs-MOSFET IRLU120
  • 1x Schottky-Diode
  • 1x Zenerdiode 3,6V
  • 1x Induktivität 68μH, 2A belastbar
  • 1x 1,5 Ohm Widerstand
  • 4x 68 Ohm Widerstände
  • 1x 100 nF Keramik - Kondensator
  • 3x 1 μF Keramik - Kondensatoren
  • 1x Lochrasterplatine
  • 1x Taster
  • 1x USB 2.0 Serial - Converter zum Flashen des Mikrocontroller
  • Kupferlitze zur Verdrahtung
  • Wärmeleitpaste

Projektplan

Der Projektplan veranschaulicht die einzelnen Arbeitsvorgänge im Groben und stellt ihre zeitliche Dauer dar. So kann man erkennen, welche Aufgabe, wie viel Zeit in Anspruch genommen hat.

Abbildung 1: Projektplanung













Projektdurchführung

Abbildung 2: Schaltplan
Abbildung 3: simulierte Schaltung
Abbildung 4: dreidimensionale Schaltung
Abbildung 5: Verdrahtung

Als Grundlage für die Umrüstung diente die Schaltung (Abbildung 2: Schaltplan). Darauf aufbauend wurde die Bauteilliste erstellt. Dabei wird ein Mikrocontroller verbaut, der zum einen die Bedienung der Taschenlampe steuert und zum anderen die Aufgaben eines Schaltreglers übernimmt. In der Schaltung sind zudem ein Taster für die Bedienung und links zwei LEDs zur Statusrückmeldung verbaut, welche im realen Aufbau als Duo-LED zusammengefasst wurden. Als Ausgangsperipherie dient dann die Power-LED rechts in der Schaltung. Der Schaltplan wurde daraufhin mit dem Programm Multisim realisiert und anschließend in das Programm Ultiboard (Abbildung 3: Schaltung) übertragen.

Für die Power-LED wurde ein Adapter entworfen, der auf die alte Glühlampenfassung gesetzt wird und einen Kühlkörper beinhaltet, der die Wärme abführt. Für den Taster und die Status-Duo-LED wurden zwei Bohrungen an der Seite der Fassung vorgenommen. Die simulierte Schaltung ist anschließend auf eine Lochrasterplatine übertragen und aufgelötet worden. Die Verdrahtung der Hauptplatine ist in Abbildung 5 zu sehen. Für den Controller ist eine Fassung verbaut, sodass dieser leicht entnehmbar ist, um ihn zu Flashen. Zum Flashen wurde dafür ein weiterer Adapter entworfen, der die entsprechenden Pin-Belegungen des Controllers mit einem USB-UART-Wander verbindet. Für die externen Bauteile sind darüber hinaus Pfostenstecker benutzt worden, um sie einfacher kontaktieren zu können.

Erläuterung Schaltplan

Der Schaltplan besteht prinzipiell aus einer Stromversorgung, einem Mikrocontroller, den Bedienelementen und einem Step-Up-Converter. Auf der linken Seite des Mikrocontrollers findet man die Bedienelemente (Taster) zum Ein- und Ausschalten der Power-LED, sowie die Anzeige durch die Rot-Grün Duo-LED. Da die Power-LED eine hohe Betriebsspannung benötigt, benötigt man einen Step-Up-Converter. Dieser befindet sich auf der rechten Seite und ist in Abbildung 6 vereinfacht dargestellt. Es handelt sich um eine Spule in Reihe mit einer Diode. Außerdem enthält die Schaltung einen MOSFET (hier als Schalter dargestellt) und einen Kondensator.

Abbildung 6: Step-Up-Converter

1. Fall: Schalter geöffnet und t -> unendlich Liegen z.B. als Eingangsspannung 10 Volt an, so wird die Ausgangsspannung ca. 9.5 Volt betragen, da an der Diode noch etwas abfällt. Der gewünschte Effekt der Verstärkung der Eingangsspannung ist also noch nicht eingetreten.

2. Fall: Schalter geschlossen Wenn der Schalter geschlossen ist, verhindert die Diode ein Entladen des Kondensators, also bleibt die Ausgangsspannung erhalten. Außerdem wird die Spule kurzgeschlossen (der Schalter darf nur für einen Bruchteil einer Sekunde geschlossen werden, ansonsten wird die Spule zerstört). Dadurch speichert die Spule Energie in Form eines Magnetfeldes.

3. Fall: Schalter erneut geöffnet Wenn man den Schalter nun erneut öffnet, versucht die Spule den Stromfluss aufrecht zu erhalten. Das bedeutet, dass Sie die vorher abgespeicherte Energie über die Diode und den Kondensator abgibt. Somit summiert sie sich am Kondensator auf.

Interessanterweise regelt der hier verwendete Mikrocontroller den Step-Up-Converter von ganz alleine über die integrierten Peripherie-Blöcke SCT (State Controlled Timer) und einem Komparator, ganz ohne Software. Der Komparator vergleicht die Spannung an dem 1,5 Ohm Widerstand mit einer vorher eingestellten Referenzspannung. Der SCT liefert ein Rechtecksignal mit einer gewissen Frequenz und steuert so den MOSFET. Übersteigt die Spannung die Referenzspannung schaltet sich der SCT ab und die Spannung sinkt wieder. Wenn die Spannung wieder unterhalb der Referenzspannung ist, schaltet sich der SCT wieder an.

Software

Der Mikrocontroller übernimmt außer das Steuern des Step-Up-Converters noch softwaremäßig die Berechnung des Batteriestatus, das Entprellen der Taster und die Kontrolle der Rot-Grün Duo-LED Anzeige.

Die Software wird mithilfe eines USB-Seriell-Adapters auf den Mikrocontroller übertragen.


Fazit und Ausblick

Weiterführende Links

  1. https://de.wikipedia.org/wiki/Aufw%C3%A4rtswandler (abgerufen am 08. Oktober 2015)
  2. https://www.youtube.com/watch?v=aYTyp2aQB4c (abgerufen am 09. Oktober 2015)

Unterlagen

YouTube Video


→ zurück zum Hauptartikel: Fachpraktikum Elektrotechnik (WS 15/16)