Legosortiermaschine Sortierung: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
KKeine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Zeile 63: Zeile 63:
| Sortierung der Legoteile in drei Kategorien
| Sortierung der Legoteile in drei Kategorien
| Zur Feinsortierung der erkannten Teile werden die ursprünglichen Einlagen der LEGO-Kästen verwendet
| Zur Feinsortierung der erkannten Teile werden die ursprünglichen Einlagen der LEGO-Kästen verwendet
|  
| [http://193.175.248.52/wiki/index.php?title=Legosortiermaschine_Sortierung&action=submit#CAD-Konstruktion Link]
|-
|-
| 0112
| 0112
Zeile 69: Zeile 69:
| Sortierung der Legoteile in drei Kategorien
| Sortierung der Legoteile in drei Kategorien
| Jedes aus der Bildverarbeitung kommende Teil wird über einen Klappenmechanismus zum passenden Fach geleitet.
| Jedes aus der Bildverarbeitung kommende Teil wird über einen Klappenmechanismus zum passenden Fach geleitet.
|  
| [http://193.175.248.52/wiki/index.php?title=Legosortiermaschine_Sortierung&action=submit#CAD-Konstruktion Link]
|-
|-
| 0130
| 0130
Zeile 582: Zeile 582:


-Inbetriebnahme
-Inbetriebnahme


<!-- =='''Schluss'''== -->
<!-- =='''Schluss'''== -->


''Dies ist ein Unterartikel von der [http://193.175.248.52/wiki/index.php/Legoteil_Z%C3%A4hlmaschine  Legoteil_Zählmaschine], welcher den genauen Aufbau der Sortierung beschreibt.''
''Dies ist ein Unterartikel von der [http://193.175.248.52/wiki/index.php/Legoteil_Z%C3%A4hlmaschine  Legoteil_Zählmaschine], welcher den genauen Aufbau der Sortierung beschreibt.''

Version vom 27. Februar 2018, 21:05 Uhr

Teammitglieder: Paul Klages

CAD-Konstruktion-Sortiereinheit

Dies ist ein Unterartikel von der Legoteil_Zählmaschine, welcher den genauen Aufbau der Separierung beschreibt.

Die Sortiereinheit der Legosortiermaschine stellt einen der drei wichtigen Bereiche dar. Aufgabe der Sortiereinheit ist die Übernahme eines Legoteils von der Bildverarbeitung und der physikalische Transport in das richtige Fach. Nach einer ausführlichen Ist-Analyse wurde beschlossen, die Einheit von Grund auf neu zu konzipieren. Im Vordergrund stand dabei auch das Anwenden von methodischen Konstruktionstechniken und das Einüben der Kanban-Methode zur Prozesssteuerung. Diese Wiki-Seite soll die Ergebnisse dieser Konstruktionsbemühungen dokumentieren.

Anforderungen

Spezifikations-ID Anforderungs-ID Anforderungstitel Beschreibung der Spezifikation Links
310 REQ10.2230 Sortierung Definition von Zielen und Erstellung einer Ist-Analyse Link
320 REQ10.2230 Sortierung Erstellung eines Funktionsflussdiagramms Link
330 REQ10.2230 Sortierung Erstellung eines Morphologischen Kastens Link
340 REQ10.2230 Sortierung Bewertung der Lösungsvarianten nach VDI 2221 Link
370 REQ10.2230 Sortierung Erstellung von Feinkonzepten Link
0110 REQ10.2230 Sortierung der Legoteile in drei Kategorien Die Sortierung der Legoteile erfolgt in drei Kategorien:

1. 'Erkannt': Automatische Feinsortierung in gesonderte Fächer,

2. 'Nicht erkannt': Ausschuss in ein separates Fach "nicht erkannt",

3. 'Erkannt - Fremdteil': Ausschuss in ein separates Fach "Fremdteil"

Link
0111 REQ10.2230 Sortierung der Legoteile in drei Kategorien Zur Feinsortierung der erkannten Teile werden die ursprünglichen Einlagen der LEGO-Kästen verwendet Link
0112 REQ10.2230 Sortierung der Legoteile in drei Kategorien Jedes aus der Bildverarbeitung kommende Teil wird über einen Klappenmechanismus zum passenden Fach geleitet. Link
0130 REQ10.2310 Rückführung nicht erkannter Teile Nicht erkannte Teile können manuell in den Bunker zurückgeführt werden Link


Ziele und Aufgaben im Semester 2017/2018

Team: Alexander Soschnikow, Paul Klages

Ziel: Die Legoteile werden von der Bildverarbeitung über ein neu entwickeltes Sortierverfahren direkt in die Legokästen sortiert.

Aufgaben:

- Abbau des Linearläufers und eventueller Rückbau

- Auswahl eines neuen Sortierverfahrens

- Entwicklung des neuen Verfahrens

- Konstruieren der Sortieranlage

- Aufbau der Sortierung

Systementwurf

Funktionsfluss

Hier zu sehen ist das Funktionsflussdiagramm der Sortierung, das sowohl die einzelnen erforderlichen Funktionen der Sortierung aufweist, als auch zeitgleich den Fluss des Legoteils beschreibt.

Vom Bediener wird das Legoteil in den Bunker gegeben, wo es durch die Vereinzelung und durch die Bildverarbeitung in das im Folgenden beschriebene System der Sortierung gelangt.

Von der Bildverarbeitung übergeben, muss das Legoteil zunächst abgebremst werden, um eventuelle Schäden am Legoteil zu vermindern. Nach der Abbremsung erfolgt die Sortierung selber, welche eine Vorsortierung in die drei Kategorien erkanntes Teil, erkanntes Fremdteil und nicht erkanntes Teil vornimmt. Danach erfolgt durch den Transport A, Transport B oder Transport C der Abtransport des Teiles entweder in die Feinsortierung für die erkannten Teile, die Rückführung für die nicht erkannten Teile oder die Einlagerung A für die erkannten Teile, die allerdings nicht zu dem momentan ausgewählten Kasten gehören.

Die Rückführung erfolgt je nach Umsetzung manuell über den Bediener oder automatisch. Nach der Feinsortierung der Legoteile werden diese über den Transport D in die Einlagerung B überführt.

Die Vorsortierung und die Feinsortierung kann in einem System umgesetzt werden, daher hier die Systemgrenze der Sortierung. Gleiches trifft auf die Transporte der drei Hauptkategorien zu, daher die Systemgrenze der Zuführung.


Morphologischer Kasten


Aufgeführt sind verschiedene Lösungsmöglichkeiten der einzelnen Teilfunktionen der Sortierung.

Beispielhaft werden im Folgenden vier Lösungen detailierter beschrieben.

Lösungsmöglichkeit A

Die Lösungsmöglichkeit A beschreibt eine völlig neue Konzeptidee, bei der eine Klappenbox aus Acrylglas gebaut werden soll, die direkt in die originalen Legokasteneinlagen sortiert.


  • Abbremsung: Fliegengitter
  • Vorsortierung: Klappenmechanismus
  • Transport A: Schacht
  • Feinsortierung: Klappenbox
  • Transport B: Schacht
  • Transport C: Schlauch
  • Transport D: nichts
  • Einlagerung A: Legokasten
  • Einlagerung B: original Legokasteneinlagen
  • Rückführung: Förderband


Bei dieser Lösungsmöglichkeit wird der Transport A-D in der Feinsortierung -der Klappenbox- selbst realisiert.

Lösungsmöglichkeit B

Die Lösungsmöglichkeit B übernimmt den Voraufbau des letzten Jahrgangs und erweitert diesen um eine elektrisch angesteuerte Klappe im Hauptrohr.


  • Abbremsung: Rohr
  • Vorsortierung: keine
  • Transport A: Rohr
  • Feinsortierung: Linearschlitten + Klappe
  • Transport B: Rohr
  • Transport C: Rohr
  • Transport D: Rohr
  • Einlagerung A: einzelne schwarze Box
  • Einlagerung B: schwarze Boxen
  • Rückführung: manuell durch Auffangbehälter


Hierbei sind Transport A-D in einer Lösungsmöglichkeit kombiniert, sowie beide Einlagerungen.


Lösungsmöglichkeit C

Die Lösungsmöglichkeit C stellt eine Erweiterung der Lösungsmöglichkeit B dar, indem im Hauptrohr statt einer Klappe, mehrere Klappen verbaut sind und somit die Auflösung der Auffangboxen vergrößert werden kann, um eine feinere Sortierung zu ermöglichen.


  • Abbremsung: Rohr
  • Vorsortierung: keine
  • Transport A: Rohr
  • Feinsortierung: Linearschlitten + n-Klappen
  • Transport B: Schlauch
  • Transport C: Schlauch
  • Transport D: nichts
  • Einlagerung A: einzelne schwarze Box
  • Einlagerung B: schwarze Boxen
  • Rückführung: manuell durch Auffangbehälter


Zusammengefasst werden hier Transport A-C, sowie beide Einlagerungen.


Lösungsmöglichkeit D

Die Lösungsmöglichkeit D ist inspiriert von Flughafenförderbändern und ist nur durch die Ausmaße der kompletten Anlage auf die Sortiergenauigkeit eingeschränkt.

Das Karussell, auf welchem die schwarzen Boxen befestigt sind, ist beliebig erweiterbar und kann auch um Ecken geführt werden, um den vorhandenen Platz optimal auszunutzen.


  • Abbremsung: Fliegengitter
  • Vorsortierung: keine
  • Transport A: Schacht
  • Feinsortierung: langes Karussell
  • Transport B: Schacht
  • Transport C: Schacht
  • Transport D: Schacht
  • Einlagerung A: einzelne schwarze Box
  • Einlagerung B: schwarze Boxen
  • Rückführung: manuell durch Auffangbehälter


Transport A-D, sowie Einlagerung A und B werden in einem Schacht bzw. einer Boxmatrix realisiert.


Bewertung der Lösungsmöglichkeiten

Zur Bewertung der Lösungsvarianten wurden zunächst Kriterien definiert, anhand derer die Konzepte bewertet werden. Die Kriterien lassen sich grob in zwei Kategorien einteilen, in funktionale und nicht funktionale Kriterien. Funktionale Kriterien sollen die Funktionsfähigkeit der Lösungsvariante bewerten. Dazu gehört die Minimierung von Gefahren, dass Legoteile verkanten, brechen oder dem System verloren gehen. Auch die Sortiergeschwindigkeit und der benötigte manuelle Aufwand bei Betrieb spielen eine Rolle bei der Bewertung. Zu den nicht funktionalen Kriterien gehören geschätzte Kosten, Komplexität und Zeitbedarf. Die Wiederverwertung der Vorarbeit wurde ebenfalls als ein wichtiges Kriterium definiert. Anschließend wurden alle Kriterien gewichtet (1(nicht wichtig)-10(wichtig)) und alle Lösungsvarianten mit Noten (1(niedrig)-4(hoch)) bewertet.


Als beste Lösungsmöglichkeit stellt sich die Lösungsmöglichkeit A heraus, da sie zwar kaum bis keine Vorarbeit der Vorsemester nutzt und sehr komplex ist, dafür aber in Sortiergeschwindigkeit, dem manuellen Aufwand während des Betriebes und der Bruch-, Verkantungs-, sowie Verlustgefahr übertrifft.

Diese Lösungsvariante wurde als finale Variante ausgewählt und soll nun im Seminar umgesetzt werden.


Hauptteil

Vorentwicklung

Teilkonzept: Fügen

Die Klappenbox soll aus durchsichtigen Acrylglas-Platten realisiert werden. Das hat den Vorteil, dass der ganze Mechanismus einsehbar ist. Ebenfalls besteht die Möglichkeit auf den Laser-Cutter und Acrylglas Reserven der Hochschule zuzugreifen, was die Umsetzung der Konstruktion günstiger und schneller umsetzbar macht. Mit dem Laser-Cutter können die Platten mit hoher Auflösung aus CAD-Dateien zugeschnitten werden.

Das Fügen soll durch Verzahnung der Acrylglas-Platten realisiert werden. Sie sollen mit Hilfe von lichthärtendem Reaktionsklebstoff verklebt werden.

Weiterhin sollen Kleinteile mit einem 3D-Drucker gefertigt werden, welcher ebenfalls von der Hochschule gestellt wird, was einen günstigen und einfachen Fertigungsweg ermöglicht. Diese können ggf. auch verklebt werden, wozu sich ein Alleskleber eignet.

Teilkonzept: Klappengestaltung

Für die Klappen wird 5mm starkes Acrylglas verwendet, welches an der Unterseite eingekerbt wird, um eine einfache Anbringung des Stahldrahtes zu ermöglichen.

Teilkonzept: Klappenlagerung

Für die Lagerung der Klappen wird lediglich ein Loch auf beide Seiten der Wände gebohrt, durch welches der Stahldraht gesteckt wird.

Teilkonzept: Trichter

Mit Hilfe einer Anschlagplatte, kann die Klappe passgenau mit dem Trichter und der Wand (schwarz) abschließen, um so Kanten oder Verkantungsgefahren zu vermeiden.


Teilkonzept: Stellerauswahl

Bevor verschiedene Servos gegenübergestellt werden können, müssen zunächst einige Kriterien festgelegt werden.

  • Das erste Kriterium für die Servos ist, dass diese mit 5V Versorgungsspannung betrieben werden können.
  • Das zweite Kriterium ist, dass das Drehmoment des Servos bei 5V Versorgungsspannung ausreicht, die für das jeweilige Servo zugehörige(n) Klappe(n) zu bewegen.

Um das Design der Drehmomentübertragung von Servo zu Welle zu vereinfachen, soll nach Möglichkeit ein Servotyp für alle Wellen eingesetzt werden.


Auf vielen Wellen sind mehrere kleine Klappen befestigt und auf wenigen eine große Klappe.


Für die Vorsortierung werden drei Servos benötigt, die jeweils eine große Klappe bewegen.

Bei der Feinsortierung in die weiße Einlage werden zwei Servos benötigt, für zwei große Klappen.

In dem Tower für die Feinsortierung in die rote Einlage, müssen sechs Servos verbaut, die in allen Fällen, bis auf einem Fall, mehrere Klappen auf einer Welle bewegen müssen.


Die Extremfälle der Klappen wäre für die Größte eine Abmessung von ca. 263mm x 200mm x 5 mm.

Der Fall der wenigsten kleinen Klappen auf einer Welle wären drei Klappen, mit den Abmessungen von ca. 1: 51mm x 60mm x 5mm, 2: 43mm x 60mm x 5mm, sowie 3: 86mm x 60mm x 5mm.


Nach ISO 1183 beträgt die Dichte von Plexiglas , wodurch sich die Gewichte für die Klappen wie folgt berechnen lassen:

  • Groß:

  • Klein:


Ausgehend vom dem jeweils größt möglichen Hebelarm ergeben sich folgende mindestens benötigte Drehmomente:


  • Groß:


  • Klein:


Wie bereits erwähnt, soll nach Möglichkeit ein Servotyp für alle Klappen bzw. Wellen verwendet werden.

Daher wird im Folgenden nur mit dem mindestens Benötigten Drehmoment der großen Klappe gearbeitet.


Aufgelistet sind zehn verschiedene Standard-Servos unterschiedlicher Hersteller und Anbieter.


Diese zehn Servos werden nun anhand verschiedener Kriterien miteinander verglichen.


Anhand dieser Gegenüberstellung und der Bewertung der einzelnen Servos, lässt sich deutlich erkennen, dass „DS4020“ das beste Servo für unsere Anwendung ist, knapp gefolgt von „BMS-410C“, welches zwar im Preis überzeugt, dafür aber in allen anderen Kriterien Abzüge bekommt.


Da die fertige Konstruktion als CAD-Modell die wahren Maße der Klappen offenbart hat, wurde die Drehmomentberechnung aktualisiert.

Allerdings lässt sich erkennen, dass sich zwar die Welle geändert hat, die das größte Drehmoment beansprucht, jedoch das benötigte Drehmoment nicht wesentlich.


Links zu den Servos:

BMS-410C

HS-311

RS2 MG/BB

RS-610WP MG

Feedback 360

Continuous Rotation

SC-0254MG

SC-0251MG

DS4020

S 3152

Teilkonzept: Stellerbefestigung

Die Servos werden auf eine kleine Platte geschraubt, die wiederum mit dem Kasten verklebt ist.

Teilkonzept: Drehmomentübertragung

An Servo- und Klappenachse sind Flügelhörner, wie im Modellbau üblich, befestigt. Diese sollen mit dem 3D-Drucker gefertigt werden. Die beiden Flügelhörner sind elastisch durch Federn gekoppelt. So kann der Servo auch übersteuert werden, ohne einen Schaden am Servo und am Klappenmechanismus zu bewirken. Im Fall der Übersteuerung wird lediglich eine Feder gestaucht und die andere gestreckt.


Eine weitere Alternative zur Drehmomentübertragung ist ein Flügelstellglied, welches pneumatisch und nicht elektrisch angetrieben wird.

Der Vorteil dieses Stellgliedes ist, dass die Endpositionen leicht und mit viel Kraft angesteuert werden können. Ein weiterer Vorteil pneumatischer Antriebe ist, dass sie keine Kraftregulierung benötigen und dadurch elastisch stellbar sind.

Teilkonzept: Vorsortierung

Für die Vorsortierung gibt es verschiedene Lösungsansätze. Einerseits vom Prinzip der Klappenbox und als 4-3-Wegeventil, wobei es für dieses Ventil drei verschiedene Ideen gibt.

Einmal die Idee mit drei verschiedenen Stellungen des Fliegengitters, um das Teil in die gewünschte Richtung abzulenken,

einmal mit einer Stellung des Fliegengitters und einer Klappe auf zwei Seiten, die in der mittleren Stellung oben sind und durch die Schwerkraft nach unten fallen, sobald das Gestell wieder in Ausgangslage gefahren ist und

einmal mit einer Stellung des Fliegengitters, aber Schächten unterhalb, die in jeweils andere Richtungen führen.


Teilkonzept: Rückführung

Geplant ist per Förderband, optional kann eine Kiste verwendet werden.


Teilkonzept: Abbremsung

Da vergangene Semester von beschädigten oder zerstörten Legoteilen durch das Herauspusten aus der Bildverarbeitungsbox berichteten, soll ein schräges Fliegengitter montiert werden, sodass die Luft zwar entweichen kann, die Teile aber dennoch im System bleiben.

CAD-Konstruktion

Aufgrund der Komplexität des Projektes und der Konstruktion wurden die Klappen bzw die Wellen in Ebenen aufgeteilt (1. Bild) und die Fächer zur Einsortierung (2. - 4.Bild) sowie die Servos nummeriert.

Weiterhin war die genaue Lagebeschreibung der einzelnen Bauteile eine Herausforderung.

Diesbezüglich findet sich im SVN eine Textdatei mit Anmerkungen zu den Beschreibungen.

Teilkonzept: Fügen

Wie bereits in der Vorentwicklung festgelegt, soll die Konstruktion komplett steckbar und somit leicht (de)montierbar sein.

Dies wurde durch eine Verzahnung der großen Platten und Schlitzen für kleine Bauteile, wie im Bild unten zu sehen, realisiert.

Teilkonzept: Klappengestaltung

Aufgrund der Nut auf der Unterseite der Klappe zur besseren Klebeverbindung dieser mit der Welle, wurde sich dazu entschieden, die Klappen nicht aus Acrylglas zu fertigen, sondern mit dem 3D-Drucker herzustellen.

Die Klappen werden mit Hilfe eines Allesklebers mit der Stahlwelle verbunden.

Teilkonzept: Klappenlagerung & Trichter

Die Stahlwelle der Klappe ist in einem Loch in der Towerwand gelagert.

Durch die Anschlagplatten (blau) zu beiden Seiten der Klappe ist ein passgenaues Abschließen des Trichters gewährleistet, sowie eine Verminderung der Verkantungsgefahr.

Ebenso dienen die Trichter zur Klappenhöhenverringerung, um sich so genug Spielraum für jede Ebene zu gewährleisten.

Teilkonzept: Stellerbefestigung

Die Servos werden über Schrauben mit einem gedruckten 3D-Bauteil verbunden, welches wiederum über das bereits erwähnte Stecksystem und einem Alleskleber mit den Towern verbunden wird.

Teilkonzept: Drehmomentübertragung

Sowohl an den Wellen, als auch an den Servos sind Flügelhörner angebracht.

Um eine Torsion zwischen Flügelhorn und Welle zu verhindern, muss das Ende der Welle so gebogen werden, dass diese in das zweite Loch gesteckt werden kann, bevor beides miteinander verklebt wird.

Zwischen beiden Flügelhörnern werden Federn gespannt, sodass die Klappen mit Druck an die Anschlagplatten gedrückt werden kann und eventuelle Steuerfehler(zittern) minimiert werden.

Teilkonzept: Vorsortierung

Die Vorsortierung in die drei Hauptkategorien „erkanntes Teil“, „erkanntes Fremdteil“ und „nicht erkanntes Teil“, wurde mit Hilfe von drei Klappen realisiert.


Ist das Teil ein „erkanntes Fremdteil“, so fällt es einfach nach unten durch und alle Klappen sind in ihrer Extremposition an der Wand.


Ist das Teil ein „nicht erkanntes Teil“, so befinden sich die beiden oberen Klappen in ihrer Extremposition an der Wand und die darunter liegende Klappe wird so gestellt, dass das Teil abgelenkt wird und in den Rückführschacht gelangt.


Für die Kategorie „erkanntes Teil“ sind die beiden oberen Klappen zuständig. Soll das Teil in die weiße Einlage einsortiert werden, so stellt sich die rechte Klappe, bei der roten Einlage die Linke.


Teilkonzept: Rückführung

Derzeit ist für die Rückführung (Bild unten & Bild oben) eine Box geplant, die unter der Öffnung des Rückführschachts platziert wird.

Jedoch wäre auch ein Förderband möglich, welches nicht erkannte Teile wieder zurück in den Bunker befördert.

Dieses Förderband müsste dem entsprechend unter einem Winkel angebracht werden, um den Höhenunterschied von Öffnung Rückführschacht und Öffnung Bunker zu überbrücken.

Teilkonzept: Abbremsung

Für die Abbremsung wurde kein Fliegengitter, wie anfangs geplant, sondern ein Metallgitter verwendet, da dieses bei häufiger Nutzung oder Beschuss keine bis keine Verschleißerscheinungen aufweisen wird, anders wie beim Fliegengitter zu erwarten wäre.

Teilkonzept: Betriebssicherheit

Die komplette Konstruktion der Sortiereinheit ist ein abgeschlossenes System, in welches sich während des Betriebs nur bedingt eingreifen lässt.

Die Deckel der Tower, sowie des Transportschachts von der Bildverarbeitungsbox zur Vorsortierung, sind mit einem kleinen Überstand versehen, sodass sie sich abnehmen ließen, sofern ein Eingreifen notwendig wäre.

Weiterhin sind alle Servos nach Möglichkeit auf der Rückseite oder an den Seiten, nicht aber auf der Vorderseite angebracht, sodass man dort nur schwierig mit den Fingern herein geraten könnte.

Ebenso sind die beiden Tower mit einem Verpolschutz auf der Grundplatte versehen, sodass sich die Einlagen der Legokästen weder falsch herum, noch vertauscht einsetzen lassen.

Fertigung

Acryl-Platten

Alle 37 Bauteile, die aus Acrylglas gefertigt werden sollen, wurden bereits in SolidWorks so angeordnet, dass möglichst wenig Platten zur Herstellung aller Bauteile von Nöten sind.

Ausstehend ist noch die Umwandlung der ".SLDPRT"-Dateien in Vektorgrafiken, damit diese an die zuständigen wissenschaftlichen Mitarbeitern in Hamm für den Lasercutter geschickt werden können.

3D-Druckteile

Es wurden schon einige Bauteile der 93 zu druckenden Teile im 3D-Druck gefertigt und zusammengesetzt.

Aufgrund der Überhänge von einzelnen Bauteilen mussten diese noch händisch nachgearbeitet werden, sowie alle anderen Bauteile entgratet werden mussten.

Servos

Für das korrekte Anschließen der Servos ist die richtige Verpolung zu beachten. Der Servo bietet drei verschiedenfarbige Anschlussmöglichkeiten: Orange(PWM-Signal), Rot(5V) und Braun(Ground).

Pro Welle wird ein Servo benötigt, sodass sich eine Gesamtanzahl von elf Servos ergibt.

Angesteuert werden diese über die PWM-Anschlüsse des Arduinos und einer Steuerleitung.

Die Arduinosoftware wurde dahingehend erweitert und bis zum Auftreten der Störsignale getestet.

Jedoch gibt es hier noch ungeklärte Störungen und Fehler, da auf einigen Pins des Arduinos scheinbar kein Signal gesendet oder überlagert wird.

Im folgenden Bild zu sehen sind zwei Pins, auf denen das gleiche Signal an die Servos gesendet werden sollte, jedoch nur bei dem einen richtig ankommt.

Ausblick/Finaler Stand

Im kommenden Sommersemester 18 sind noch folgenden Aufgaben zu erledigen, um das Projekt erfolgreich abzuschließen:

-Beschaffung

-Fertigung der Platten

-Zusammenbau

-Inbetriebnahme


Dies ist ein Unterartikel von der Legoteil_Zählmaschine, welcher den genauen Aufbau der Sortierung beschreibt.