AM 09: Inertialnavigation: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Zeile 36: Zeile 36:


= Ergebnis =
= Ergebnis =
'''Inertialnavigation mithilfe der GY-85 IMU '''
Die inertiale Messeinheit (IMU) GY-85 kombiniert mehrere Inertialsensoren auf einer Platine. Enthalten sind:  [[Datei:Fusion.png|250px|thumb|Abbildung 1: Sensordatenfusion]]
Die inertiale Messeinheit (IMU) GY-85 kombiniert mehrere Inertialsensoren auf einer Platine. Enthalten sind:  [[Datei:Fusion.png|250px|thumb|Abbildung 1: Sensordatenfusion]]


Zeile 48: Zeile 50:
Die Datenübertragung von Sensor zu Mikrocontroller findet über eine I²C-Kommunikation statt. Die Sensoren weisen verschiedene Schwächen auf, die bei der Nutzung als Navigationssensoren zu berücksichtigen sind.  
Die Datenübertragung von Sensor zu Mikrocontroller findet über eine I²C-Kommunikation statt. Die Sensoren weisen verschiedene Schwächen auf, die bei der Nutzung als Navigationssensoren zu berücksichtigen sind.  
Wie in Abbildung 1 ersichtlich, soll durch die Fusionierung der drei Sensordaten ein genauerer Kurs ermittelt werden, als würde nur einer der Sensoren benutzt werden. Dabei werden auf kurze Laufzeiten die Daten des Gyrosensors genutzt. In wiederkehrenden Abständen werden diese Werte durch Daten des Beschleunigungssensors korrigiert. Zusätzlich findet der Kompasssensor Anwendung zur Korrektion dieser Werte.
Wie in Abbildung 1 ersichtlich, soll durch die Fusionierung der drei Sensordaten ein genauerer Kurs ermittelt werden, als würde nur einer der Sensoren benutzt werden. Dabei werden auf kurze Laufzeiten die Daten des Gyrosensors genutzt. In wiederkehrenden Abständen werden diese Werte durch Daten des Beschleunigungssensors korrigiert. Zusätzlich findet der Kompasssensor Anwendung zur Korrektion dieser Werte.
''HMC5883L (3-Achsen Digitalkompass)''
3-Achsen, bei ebener Ausrichtung sind nur X- und Y-Achse nötig, um die Abweichung zwischen Norden zu berechnen. Ein 0° Kurs kennzeichnet die Ausrichtung nach Norden. Der Kompasssensor gibt den Kurs absolut an. Ist jedoch störungsbehaftet besonders wenn sich Ferromagnetika oder stromdurchflossene Leiter (v.a. Elektromotoren) in nahem Radius um den Sensor befinden. Der Sensor sollte mit einem minimalen Abstand von 30 cm zu Motoren angebracht werden.


= Zusammenfasung =
= Zusammenfasung =

Version vom 7. Januar 2017, 16:35 Uhr

Dieser Wiki-Beitrag ist Teil eines Projektes, welches im Rahmen vom Fachpraktikum Elektrotechnik im 5. Semester Mechatronik absolviert wurde. Ziel des Beitrags ist es, eine nachhaltige Dokumentation zu schaffen, welche die Ergebnisse festhält und das weitere Arbeiten am Projekt ermöglicht.

Autoren:

Betreuer: Prof. Schneider


Aufgabe

Integration einer IMU


Erwartungen an die Projektlösung

  • Einarbeitung in die bestehenden Ardumowers-Unterlagen
  • Planung und Beschaffung der Bauteile
  • Aufbau und Integration der Inertialsensorik (Kompass, 3-Achs-Gyros, 3-Achs-Beschleunigungsmesser)
  • Kalibrierung der Sensoren
  • Inertialnavigation (Sensordatendfusion) anhand der IMU
  • Darstellung der Ergebnisse im Vergleich zur Referenz
  • Erstellen Sie ein faszinierendes Video, welches die Funktion visualisiert.
  • Test und wiss. Dokumentation

Schwierigkeitsgrad

  • Mechanik: *
  • Elektrotechnik: *
  • Informatik: **

Einleitung

Das Ardumowerprojekt des 5. Semesters Mechatronik in Kooperation mit dem Masterstudiengang Business and System Design Engineering an der Hochschule Hamm-Lippstadt hat zum Ziel, einen voll funktionsfähigen autonomen Rasenmähroboter in Betrieb zu nehmen. Dazu werden die notwendigen Aufgaben für die Erfüllung des Projektes auf einzelne Gruppen aufgeteilt. Die Gruppe Inertialnavigation beschäftigt sich mit der Inbetriebnahme einer IMU (Inertial Measurement Unit), die eine Kombination aus drei verschiedenen Sensoren auf einer Platine darstellt. Es sind dabei ein Magnetsensor (Kompass), ein Beschleunigungssensor und ein Gierratensensor vorhanden. Damit lässt sich die Lage des Mähroboters bestimmen, nachdem die IMU verbaut wurde.

Projektdurchführung

Projektplan

Verwendete Bauteile

Ergebnis

Inertialnavigation mithilfe der GY-85 IMU

Die inertiale Messeinheit (IMU) GY-85 kombiniert mehrere Inertialsensoren auf einer Platine. Enthalten sind:

Abbildung 1: Sensordatenfusion


-ADXL345 (3-Achsen-Beschleunigungssensor)

-HMC5883L (3-Achsen Digitalkompass)

-ITG3205 (3-Achsen-Drehratensensor, Gyrosensor)


Die Datenübertragung von Sensor zu Mikrocontroller findet über eine I²C-Kommunikation statt. Die Sensoren weisen verschiedene Schwächen auf, die bei der Nutzung als Navigationssensoren zu berücksichtigen sind. Wie in Abbildung 1 ersichtlich, soll durch die Fusionierung der drei Sensordaten ein genauerer Kurs ermittelt werden, als würde nur einer der Sensoren benutzt werden. Dabei werden auf kurze Laufzeiten die Daten des Gyrosensors genutzt. In wiederkehrenden Abständen werden diese Werte durch Daten des Beschleunigungssensors korrigiert. Zusätzlich findet der Kompasssensor Anwendung zur Korrektion dieser Werte.


HMC5883L (3-Achsen Digitalkompass)

3-Achsen, bei ebener Ausrichtung sind nur X- und Y-Achse nötig, um die Abweichung zwischen Norden zu berechnen. Ein 0° Kurs kennzeichnet die Ausrichtung nach Norden. Der Kompasssensor gibt den Kurs absolut an. Ist jedoch störungsbehaftet besonders wenn sich Ferromagnetika oder stromdurchflossene Leiter (v.a. Elektromotoren) in nahem Radius um den Sensor befinden. Der Sensor sollte mit einem minimalen Abstand von 30 cm zu Motoren angebracht werden.

Zusammenfasung

Ausblick

Weiterführende Links

Unterlagen

Literatur

  • Wendel, J.': Integrierte Navigationssysteme: Sensordatenfusion, GPS und inertiale Navigation. München : Oldenbourg Verlag, 2. Auflage 2011. ISBN: 9783486704396 eBook

YouTube-Video


→ zurück zum Hauptartikel: Fachpraktikum Elektrotechnik (WS 16/17)