AEP Gruppe B2 - SoSe17: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Zeile 64: Zeile 64:


Bei der Programmierung wurde der Schwerpunkt auf eine veränderbare und strukturierte Programmstruktur gelegt. Dies beinhaltet z.B Variablen für den Reifendurchmesser, welche bei Reifenwechsel einfach angepasst werden können. Zusätzlich sollen möglichst einfach Veränderungen der Parklückensituation herbeigeführt werden können. Das Ganze sollte mit einem NXT als Mikroprozessor und einem Ultraschall-, sowie einem Gyrosensor realisiert werden.
Bei der Programmierung wurde der Schwerpunkt auf eine veränderbare und strukturierte Programmstruktur gelegt. Dies beinhaltet z.B Variablen für den Reifendurchmesser, welche bei Reifenwechsel einfach angepasst werden können. Zusätzlich sollen möglichst einfach Veränderungen der Parklückensituation herbeigeführt werden können. Das Ganze sollte mit einem NXT als Mikroprozessor und einem Ultraschall-, sowie einem Gyrosensor realisiert werden.


== Programmablaufplan ==
== Programmablaufplan ==

Version vom 7. Juli 2017, 12:24 Uhr

Einführung

Im Informatikpraktikum des Sommersemesters 2017 Studiengang MTR bekamen wir die Aufgabe ein Auto zu konstruieren und programmieren, sodass es autonom einparken kann. Als Programmieroberfläche wurde MatLab gewählt. Die Grundlage bildete die NXT-Toolbox der RWTH Aachen.

Team und Aufgabenverteilung

David Reger:

• Programmierung mit Matlab

• Präsentation

• Koordination

• Ablaufdiagramm(PAP)

Yannik Schäfer:

• Konstruktion

• Videoschnitt

• LEGO Digital Designer

Matthias Giller:

• Programmierung mit SIMULINK

• Konstruktion

• Organisation

• Dokumentation

Hardware

Bei der Konstruktion unseres Chassis mussten wir bestimmte Vorgaben befolgen. Das Auto musste 2 Sensoren und 2 Aktoren besitzen. Hierzu gehören einmal ein Gyro-Sensor, welcher die Winkeländerung pro Zeit misst. Mit ihm kann der aktuelle Winkel zur Fahrstrecke errechnet werden, indem die Winkeländerung pro Zeit mit der vergangenen Zeit multipliziert wird. Ein weiterer Sensor ist der Ultraschallsensor, welcher zur Parklückenerkennung verwendet wird. Der Ultraschallsensor sendet einen Ultraschall aus, der dann von einer Wand z.B. reflektiert wird. Durch die Schallgeschwindigkeit und der Zeit kann der Abstand von dem Auto zu einem Gegenstand errechnet werden. Zu den Aktoren gehören zwei Motoren. Ein Motor befindet sich an der Hinterachse, dieser sorgt für den Antrieb des Autos. Außerdem wurde eine Differential an der Hinterachse verbaut, um eine bessere Kurvenfahrt zu ermöglichen. Der zweite Motor, der für die Lenkung dient, befindet sich an der Vorderachse. Die Sensoren und Aktoren werden über ein NXT Brick, einem Mikrocontroller, verbunden. Über diesen wird auch das komplette Programm programmiert und abgespielt.

Die Konstruktion des Autos wurde mit Hilfe von LEGO Mindstorms erstellt. Bei dem konstruieren haben wir darauf geachtet, dass das Chassis stabil ist, um eine geregelte Geradeausfahrt zu ermöglichen. Insbesondere beim Lenken ist wenig Spiel vorhanden. Der maximale Lenkeinschlag beträgt 40°. Mit Hilfe von Zahnrädern kann die Kraft der Motoren auf die Achsen übertragen werden.

Fahrzeugparameter

Parameter Wert
Länge mm
Breite mm
Spurweite (vorn) mm
Spurweite (hinten) mm
Achsabstand mm
Max. Lenkeinschlag 40 °
Max. Geschwindigkeit 0,50 m/s


Einparkkonzept und Programmstruktur

Bei der Programmierung wurde der Schwerpunkt auf eine veränderbare und strukturierte Programmstruktur gelegt. Dies beinhaltet z.B Variablen für den Reifendurchmesser, welche bei Reifenwechsel einfach angepasst werden können. Zusätzlich sollen möglichst einfach Veränderungen der Parklückensituation herbeigeführt werden können. Das Ganze sollte mit einem NXT als Mikroprozessor und einem Ultraschall-, sowie einem Gyrosensor realisiert werden.

Programmablaufplan

Fazit:

Durch dieses Projekt wurde uns bewusst, wie stark die verschiedenen Bereiche beim Entwickeln neuer Technologien miteinander verbunden sind und wie wichtig eine gute Absprache zwischen den Teams sein muss damit alles reibungslos funktioniert. Außerdem war es begeisternd den Lern- und Programmiererfolg immer direkt vor sich zu sehen.


→ zurück zum Hauptartikel: Informatikpraktikum 2 SoSe17


Links

YouTube-Video

SVN-Ordner