3D Time-of-Flight Sensor Evaluation Module mit Matlab/Simulink

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen

Sensor: TI Evaluation Module: OPT8241-CDK-EVM

Autor: Asaad Al-Suleihi

Beschreibung des Sensors

Bei dem betrachteten Sensor handelt es sich um ein Kamerasystem, das mit Hilfe des Time-of-Flight-Verfahrens ein 3D-Bild seiner Umgebung erstellen kann, kurz 3D ToF. Bei diesem wird ein Lichtstrahl pulsiert in eine Umgebung geworfen und die reflektierten Strahlen von einem Sensor aufgenommen. Anhand der Phasenverschiebung der gesendeten und aufgenommenen Strahlen lässt sich pro Bildpunkt die Entfernung zu einem Objekt berechnen und somit ein 3D-Bild der Umgebung erstellen. Der Bildsensor in einem ToF-System wird auch als Photonic Mixer Device, kurz PMD, bezeichnet (CITE).

Aufbau der Evaluations-Kit OPT8241 CDK

Das Sensorsystem besteht aus drei Komponenten. Die Optik besteht aus einer Platine mit einer Lichtquelle. Genauer sind hier vier Laserdioden eingebaut. In der Abbildung (ABB) ist diese Komponente grün umrandet. Die zweite Komponente, die Steuerungs- und Auswerteelektronik, steuert zum einem die Lichtquelle und bestimmt somit die Lichtimpulse. Zum anderen enthält sie den eigentlichen Lichtsensor samt seiner Optik. Sie wertet die nimmt die von Objekten in der Umgebung zurückreflektierten Lichtstrahlen auf und berechnet daraus die Tiefeninformationen der jeweiligen Pixel. Diese Komponente ist im Bild (ABB) rot umrandet. Unterstützt wird das System durch die dritte Komponente, die z.B. Arbeitsspeicher, Konfigurations- und Kalibrierspeicher, USB-Schnittstelle, Power-Management usw. bereitstellt. Im Bild ist diese blau umrandet. (BILD)

Funktionsweise des Sensors

Ein 3D ToF-Sensor besteht hauptsächlich aus zwei Komponenten: ein Lichtsensor, z.B. ein CMOS-Lichtsensormatrix, und eine modulierte Lichtquelle, meist eine Laserdiode. (CITE) Die Umgebung wird von der Quelle mit Lichtpulsen angestrahlt. Diese Lichtstrahlen werden von Objekten in der Umgebung zurückreflektiert und vom Sensor erfasst. Durch die Berechnung der Phasenverschiebung zwischen abgestrahlten und aufgenommenen Lichtstrahl kann die Entfernung zum Reflektionspunkt ermittelt werden. Es wird also über die Flugdauer zum Objekt die Distanz ermittelt. Daher stammt der Name Time-of-Flight. (BILD)

Die Lichtquelle sendet ein Lichtpuls der Breite aus. Am Sensor werden dabei über zwei Zeitfenster und , die Phasenverschoben sind, die Menge der auftretenden Lichtenergie gemessen und aufaddiert. Diese wird im Sensorinneren durch freigesetzte Elektronen erfasst. Durch das Aufaddieren von Elektronenaufkommen wird die Ladung über die Zeitfenster und ermittelt. Diese werden respektive und bezeichnet. Daraus lässt sich mit der Formel

die Entfernung vom Reflektionspunkt zu Bildpixel im Sensor berechnen.(CITE)(BILD)

Der Sensorkern stellt ein CMOS-Bildsensor dar. Hier werden die eintreffenden Photonen in einem elektrischen Signal umgewandelt. Um diesen Kern herum existiert eine Reihe von anderen Bausteinen. Unter anderem ein Analog-Digital-Umwandler, Timing-Generator, der das zeitliche Abstimmen der Lichtausstrahlung und Bildaufnahme koordiniert, ein Modulationsblock, der die Modulation der Lichtimpulse regelt und ein Ausgabeblock für die Ausgabe der Sensordaten zur weiteren Bearbeitung. Der schematische Aufbau des Sensors ist in der Abbildung (ABB) dargestellt. (BILD(CITE))

Technische Daten (CITE)

  • Sensorauflösung: 320 x 240 Pixel
  • Bildrate: 30 Bilder / Sekunde
  • Entfernungsgenauigkeit: < 0,01%
  • Wellenlänge der emittierten Lichtstrahlen: 850 nm
  • Sensorreichweite: bis zu 5 m
  • Sichtfeld: Horizontal: 74,4 °; Vertikal: 59,3°


Die Messkette

Ausgangssignale des Sensors

Der Sensor liefert als Rohsignale sogenannte Phase Correlation Data. Diese geben einen Vergleich der gesendeten Lichtimpulse mit den empfangenen Strahlen in Hinblick auf die zeitliche Verschiebung an. Die Korrelationsdaten werden in einer Auflösung von 12 Bit weitergegeben. Des Weiteren werden noch Common Mode Data ausgegeben. Das sind Gleichtaktsignale die nicht aufgrund des gesendeten Lichtstrahls vom Sensor erfasst wurden und können als Störung durch die Umgebung oder Hintergrundstrahlung verstanden werden. Diese leitet der Sensor in 4 Bit Auflösung weiter.

Neben diese Rohdaten werden durch den auf der Sensorplatine integrierten Verarbeitungschip, den Depth Engine OPTA9221, noch zwei weitere Datenarten geliefert: Tiefenbild und Punktwolke.

Ein Tiefenbild, englisch Depth Image, bezeichnet ein Pixel-Map, in der jedes Pixel eine Tiefeninformation trägt. Das heißt, der Wert des Pixels stellt die Entfernung dieses Bildpunktes zum Sensor dar. Die Abbildung (ABB) zeigt ein Tiefenbild einer flachen Fläche. (BILD) Zu sehen ist, dass die Entfernung eines Pixels aufsteigt, je weiter man sich radial vom Bildmittelpunkt entfernt. Dies lässt sich trivial mit einem rechtwinkligen Dreieck erklären, dessen Hypotenuse länger wird, je länger die Gegenkathete wird.

Die zweite Art der Daten ist die Punktwolke, zu Englisch Point Cloud. Sie berührt auf sogenannten Voxel statt Pixel. Ein Voxel bezeichnet einen Gitterpunkt. Es wird durch die Angaben x-, y-, und z-Koordinaten beschrieben uns stellt sozusagen ein Punkt im Raum. Eine Punkwolke ist somit ein Vektor aus Voxel. Die Abbildung (ABB) zeigt eine Punktwolke einer (… BESCHREIBEN). (BILD) Im Vergleich zu einem Tiefenbild lassen sich aus einer Punktwolke einfacher z.B. Objekte konstruieren, da die Punkte einzeln in einem Vektor vorliegen und nicht erst vorher aus einem Pixel-Map herausgerechnet werden müssen.

Signalvorverarbeitung

Das Blockschaltbild in der Abbildung (ABB) des Sensors zeigt einen Verarbeitungsblock, den Analog-Processing-Block. Daraus lässt sich schließen, dass die Rohsignale zunächst vorverarbeitet werden bevor die Umsetzung in digitale Daten erfolgt. Leider gibt das Datenblatt keinerlei Informationen darüber, was in diesem Schritt passiert. Da es sich hier jedoch um einen CMOS-Sensor handelt, sind folgende Varianten vorstellbar:

  • Verstärkung der Messsignale
  • Rauschunterdrückung

Diese lassen sich im analogen Bereich durch Operationsverstärker und analoge Filter respektive umsetzen. Es ist auch denkbar, dass an dieser Stelle die Trennung der Korrelationssignale von Gleichtaktsignale stattfindet.

Analog-Digital-Umsetzung

Nach dem vorverarbeiten der analogen Signalen werden diese in digitale Daten umgesetzt. Hierzu wird ein Analog-Digital-Umsetzer genutzt. Nach diesem Schritt stehen die Korrelationsdaten in 12-Bit-, die Gleichtaktdaten in 4-Bit-Auflösung bereit. Die Art des ADU ist aus dem Datenblatt sowie verschiedene White-Paper des Herstellers nicht zu entnehmen.

Übertragung der Daten zum Mikrocontroller

Berechnung der Entfernungsdaten

Fehlermöglichkeiten

Auswertung der Messergebnisse

Inbetriebnahme des Sensors

Software

Voraussetzungen

Literatur


→ zurück zum Hauptartikel: Signalverarbeitende Systeme