2D-Styroporschneidewerkzeug für 3D-CNC-Bearbeitungsmaschine: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Zeile 136: Zeile 136:


[[Datei:BildHeizdraht_2DStyroporschneider.PNG|mini|500px|left|Abb. 6 Schaubild Funktion Heizdraht]]<br \>Nachdem die Konstruktionsphase und der Zusammenbau der benötigten Bauteile abgeschlossen war, konnte sich um die Schneidfunktion an sich gekümmert werden. Um verstehen zu können, wie ein solcher Heizdraht Styropor schneiden kann, muss zunächst erst einmal die Funktion von einem Heizdraht erläutert weden. In Abbildung X ist ein Schaubild mit der Funktion des Heizdrahtes zu sehen. Dieser Heizdraht ist ein Widerstandsdraht aus leitfähigem Material. Legt man nun eine Spannung an zwei Punkten auf diesem Heizdraht an, so kann ein Strom fließen und der Heizdraht wandelt die entstehende elektrische Leistung in thermische Leistung um und der Heizdraht wird warm. Die Temperatur des Heizdrahtes lässt sich mit Hilfe eines einstellbarem Netzteil regulieren. Diese Funktion wurde für die Umsetzung des 2D-Styroporschneiders ausgenutzt und verwendet. Nachdem ein Versuchsaufbau mit allen Komponenten erstellt worden ist, konnte durch diverse Schneidtest die optimale Parametereinstellung für das Netzteil gefunden werden. Diese beträgt bei einer Spannung von ca. 21V 2,6A.  <br clear="all" >
[[Datei:BildHeizdraht_2DStyroporschneider.PNG|mini|500px|left|Abb. 6 Schaubild Funktion Heizdraht]]<br \>Nachdem die Konstruktionsphase und der Zusammenbau der benötigten Bauteile abgeschlossen war, konnte sich um die Schneidfunktion an sich gekümmert werden. Um verstehen zu können, wie ein solcher Heizdraht Styropor schneiden kann, muss zunächst erst einmal die Funktion von einem Heizdraht erläutert weden. In Abbildung X ist ein Schaubild mit der Funktion des Heizdrahtes zu sehen. Dieser Heizdraht ist ein Widerstandsdraht aus leitfähigem Material. Legt man nun eine Spannung an zwei Punkten auf diesem Heizdraht an, so kann ein Strom fließen und der Heizdraht wandelt die entstehende elektrische Leistung in thermische Leistung um und der Heizdraht wird warm. Die Temperatur des Heizdrahtes lässt sich mit Hilfe eines einstellbarem Netzteil regulieren. Diese Funktion wurde für die Umsetzung des 2D-Styroporschneiders ausgenutzt und verwendet. Nachdem ein Versuchsaufbau mit allen Komponenten erstellt worden ist, konnte durch diverse Schneidtest die optimale Parametereinstellung für das Netzteil gefunden werden. Diese beträgt bei einer Spannung von ca. 21V 2,6A.  <br clear="all" >
[[Datei:UmsetzungDraht_2DSyroporschneider.PNG|mini|500px|left|Abb. 6 Schaubild Funktion Heizdraht]]<br \>Nachdem die Konstruktionsphase
[[Datei:UmsetzungDraht_2DSyroporschneider.PNG|mini|500px|left|Abb. 6 Schaubild Funktion Heizdraht]]<br \> Im nächsten Schritt konnte nun der Heizdraht auf Grundlage seiner Funktion gefertigt werden. Hierzu wurde der Draht auf die passende Länge geschnitten und die Enden mit Rinkabelschuhen versehen. Dies hat den Vorteil, dass der Draht schnell austauschbar ist. Danach musste Befestigung am Rahmen umgesetzt werden. Dafür wurde wie in Abbildung XX zu sehen, zwei Kunststoff Platten an den beiden Enden des Rahmens montiert. Hierdurch ist Sicher gestellt, dass der Rahmen vom Heizdraht isoliert bzw. getrennt ist. Im nächsten Schritt wurde die Spannungsversorgung mit dem Heizdraht auf beiden Seiten verbunden. Dieses wurde durch eine leitende Schraube erreicht. Des Weiteren wurde nun auf einer Seite eine Feder montiert um den Heizdraht spannen zu können. Auf der anderen Seite wurde dieser an der leitenden Schraube fixiert. Nun war der Heizdraht montiert und die Funktion Styropor Schneiden gewährleistet.

Version vom 16. Januar 2020, 16:31 Uhr


Autor: Kevin Kuhrt

→ zurück zur Übersicht: 3-D-Bearbeitungsmaschine (Projekt des Schwerpunkts GPE im Studiengang MTR)

Abb.1 2D-Styroporschneider in SOLID works







Einleitung

Im Rahmen des Studiengangs Mechatronik an der Hochschule Hamm-Lippstadt wird im 7. Fachsemester das Praktikum Produktionstechnik belegt. Dieses Praktikum ist Teil des gewählten Schwerpunkt Global Production Engineering. Die Praktikumsaufgabe ist Teil des Hauptprojektes „Aufbau einer 3-D-Bearbeitungsmaschine“ Im folgenden Artikel wird das Teilprojekt Schritt für Schritt erläutert, sodass der Leser einen Einblick in das Projekt bekommt und auch selbst unter Anleitung dieses Artikels ein solches Schneidwerkzeug herstellen kann. Des Weiteren soll dieser Artikel als Grundlage für weitere Projekte und Entwicklungen im Bezug auf das Schneiden von Styropor durch das 2D-Styroporschneidwerkzeug dienen. Das Thema wurde im Wintersemester 2019/2020 erstmalig von Kevin Kuhrt bearbeitet.


Aufgabenstellung

Im Rahmen dieses Teilpraktikums war die Aufgabe, ein 2D-Styroporwerkzeug für die 3D-CNC-Bearbeitungsmaschine zu konstruieren und herzustellen.Hierzu sollte eine austauschbare Aufnahme konzeptioniert werden, sowie eine Möglichkeit zum Schneiden von Styropor entwicket und umgesetzt werden. Das Projekt umfasste sowohl die Konzeptionierung und Konstruktion als auch die Inbetriebnahme und den abschließenden Komponententest und lässt sich in folgende Unterthemen gliedern:

• Konstruktion und Aufbau

  • Konstruktion Aufnahme und Halterung Styroporschneider
  • Erstellen technischer Zeichnungen für die Fertigung der benötigen Bauteile
  • Bearbeitung und Fertigstellung der Bauteile
  • Hardwareaufbau des Styroporschneiders

• Funktion und Test

  • Konzeptionierung einer Möglichkeit zum Schneiden von Styropor
  • Umsetzung und Durchführung der Konzeptionierung
  • Herausfinden der richtigen Bearbeitungsparameter
  • Funktion- und Komponententest

• Dokumentation

  • Dokumentation des Projektfortschritts in SVN nach dem V-Modell (Anforderungsliste, Funktionaler Systementwurf, etc.)
  • HSHL-Wiki-Eintrag erstellen

Projektbeschreibung nach dem V-Modell

Projektanforderungen

Zu Beginn des Projektes mussten zunächst erst einmal die Anforderungen an das Projekt unter der Berücksichtigung der Aufgabe "Konzeptionierug und Umsetzung eines 2D-Styroporwerkzeug für die 3D-CNC-Bearbeitungsmaschine definiert werden. Hierzu wurde sich in das Thema eingearbeitet und erste Gedanken zur möglichen Umsetzung gemacht. Nachdem mit Herrn Prof. Dr. Göbel Rücksprache gehalten wurde, stellten sich folgende Projektanforderungen heraus:

• Aufbau / Geometrie

  • Symmetrischer Aufbau der Halterung unter Berücksichtigung des maximalen Arbeitsbereiches
  • Ein- und ausbaubare Halterung
  • Verdrehschutz der Halterung
  • einfach und kostengünstig

• Funktion

  • Schneidwerkzeug zum gleichmäßigen schneiden von Styropor (2 Achsen)
  • Überwachung und Kontrollierung Schneidwerkzeug

• Schnittstellen

  • Ansteuerung Schneidwerkzeug durch CNC-Fräse (Kommunikation)
  • Spannungsversorgung Schneidwerkzeug

Technischer Systementwurf

Nachdem die Projektanforderungen definiert worden sind, konnte mit dem technischen Systementwurf begonnen werden. Dieser wurde in diesem Projet durch einen morphologischen Kasten umgesetzt und sollte dabei helfen die Lösungsstrategie zu erörtern. In Abbildung 2 ist dieser Morphologische Kasten zu sehen. Dort sind auf der linken Seite die unterschiedlichen Merkmale/Kategorien wie z.B. Schneidwerkzeug,Halterung,Besfästigung etc. zusehen. Auf der rechten Seite passend dazu die diversen Lösungsmöglichkeiten. Unter Berücksichtigung und Beachtung der Projektanforderungen wurde dann eine gute, einfache und kostengünstige Lösungsidee ausgewählt (siehe Abb. 3)

Abb.2 Morphologischer Kasten über Lösungsfindung Styroporschneider
Abb.3 Auswertung Lösungsstrategie Morphologischer Kasten Styroporschneider


Funktionaler Systementwurf

Im nächsten Schritt wurde aus der ermittelten Lösung (Abb.3) in einem Funktionalen Sytstementwurf eine Funktion des 2D-Styroporschneiders beschrieben. Diese Funktionsübersicht wurde mittels dem in Abbildung 4 zusehende Schaubild veranschaulicht. Dieses Schaubild beschreibt die lösungsneutralen Funktionen des 2D-Styroporschneiders von der Grundfunktion, dem Schneiden von Styropor, bis hin zum Maschinensignal die Halterung in x- oder z-Richtung zu verfahren.

Datei:Funktionaler Systementwurf 2DStyroposchneider.PNG


Komponentenspezifikation

Im letzten Vorbereitung Schritt wurde sich mit den Einzelkomponenten beschäftigt. Hierzu wurden zunächst die vorhandenen Komponenten ermittelt und ausgemessen. Hierzu wurde, wie in Abbildung 5 zu sehen, die Aufnahme der CNC-Fräse ausgemessen und nachgezeichnet um später die Aufnahme für den 2D Styroporschneider passend auf die Aufnahme zu konstruieren. Des Weiteren wurde der maximale Arbeitsbereich ausgemessen, welcher für die Bearbeitung des Styroporschneiders möglich ist. Dieser hat die Abmaße 900x1100x260 mm: Somit waren die Gegebenheiten und Voraussetzungen ermittelt und es konnte eine Liste mit allen zu benötigten Bauteilen und Komponenten erstellt werden.


Anmerkung: Diese Komponentenliste wurde während der Entwicklung angefertigt und bearbeitet, da sich einzelne Komponenten erst im späteren Verlauf als Notwendig herausstellten

Abb.5 Aufnahme CNC-Fräse

Folgende Komponenten mussten besorgt / bestellt werden:



Entwicklung

Konstruktion Rahmen und Aufnahme

Nachdem die Planungs- und Ideenfindungsphase abgeschlossen war, konnte auf Grundlage der ermittelten Informationen und Anforderungen mit der eigentlichen Konstruktion und Entwicklung des 2D-Styroporschneiders begonnen werden. Hierzu wurde das 3D Zeichnungsprogramm SOLID works benutzt.


Abb. 6Konstruktion des Aufnahmeblocks in SOLID works


In Abbildung 6 sieht man den gezeichneten Aufnahmeblock für den 2D-Styroporschneider. Dieser ist aus Aluminium und eine Längsausfräsung auf der Unterseite. Diese soll den Verdrehschutz gewährleisten, indem die Halterung wie in Abbildung 9 zu sehen mit der CNC-Aufnahme "verkantet". Die vier Bohrungen auf dem Bauteil sorgen für die zweifache Absicherung des Verdrehschutzes und für den schnellen und einfachen Werkzeugwechsel. Die Längsfräsung im Block selbst dient für die spätere Fixierung des Rahmens und sorgt zugleich dafür, dass auch der Rahmen sich nicht Verdrehen lässt. Für die Verbindung der beiden Komponenten sorgen dann die zwei seitlichen Bohrungen. Nachdem die Konstruktion abgeschlossen war, wurde aus dem Bauteil eine technische Zeichnung erstellt und das Bauteil gefertigt.

Abb. Boschrahmen inkl. Heizdraht in SOLID works


Im nächsten Schritt wurde dann passend zum Halterungsblock ein Rahmen aus Aluminiumprofil konstruiert (Abb. X). Dieser wurde unter Berücksichtigung des maximalen Arbeitsbereich gezeichnet und für die Veranschaulichung wurde symbolhaft ein "Heizdraht" mit eingezeichnet. Danach wurden die einzelnen Komponenten fertiggestellt und mittels Verbindungswinkeln zusammengebaut.

Abb. X Bearbeitete Aufnahme der CNC-Fräse


Nachdem die Halterung und der Rahmen konstruiert und gefertigt waren, musste noch die Aufnahme von der CNC-Fräse bearbeitet werden. Hierzu wurden vier Gewindebohrungen eingezeichnet und in die Aufnahme gebohrt. Diese besitzen die gleichen Abmaße wie die Bohrungen im Halterungsblock, sodass die beiden Komponenten miteinander verschraubt werden können.

3D-Modell Seitenansicht der Fräsmaschine


Im letzten Schritt wurden alle Komponenten in SOLID works zusammengefügt um sicherzustellen, dass alle Komponenten mit den richtigen Maßen konstruiert worden sind. Nach einer finalen Kontrolle konnten alle Teile gefertigt werden und zusammengebaut werden.

Anmerkung: Die für die einzelnen Komponenten erzeugten technischen Zeichnungen finden Sie hier:

Funktion und Umsetzung Heizdraht

Abb. 6 Schaubild Funktion Heizdraht


Nachdem die Konstruktionsphase und der Zusammenbau der benötigten Bauteile abgeschlossen war, konnte sich um die Schneidfunktion an sich gekümmert werden. Um verstehen zu können, wie ein solcher Heizdraht Styropor schneiden kann, muss zunächst erst einmal die Funktion von einem Heizdraht erläutert weden. In Abbildung X ist ein Schaubild mit der Funktion des Heizdrahtes zu sehen. Dieser Heizdraht ist ein Widerstandsdraht aus leitfähigem Material. Legt man nun eine Spannung an zwei Punkten auf diesem Heizdraht an, so kann ein Strom fließen und der Heizdraht wandelt die entstehende elektrische Leistung in thermische Leistung um und der Heizdraht wird warm. Die Temperatur des Heizdrahtes lässt sich mit Hilfe eines einstellbarem Netzteil regulieren. Diese Funktion wurde für die Umsetzung des 2D-Styroporschneiders ausgenutzt und verwendet. Nachdem ein Versuchsaufbau mit allen Komponenten erstellt worden ist, konnte durch diverse Schneidtest die optimale Parametereinstellung für das Netzteil gefunden werden. Diese beträgt bei einer Spannung von ca. 21V 2,6A.

Abb. 6 Schaubild Funktion Heizdraht


Im nächsten Schritt konnte nun der Heizdraht auf Grundlage seiner Funktion gefertigt werden. Hierzu wurde der Draht auf die passende Länge geschnitten und die Enden mit Rinkabelschuhen versehen. Dies hat den Vorteil, dass der Draht schnell austauschbar ist. Danach musste Befestigung am Rahmen umgesetzt werden. Dafür wurde wie in Abbildung XX zu sehen, zwei Kunststoff Platten an den beiden Enden des Rahmens montiert. Hierdurch ist Sicher gestellt, dass der Rahmen vom Heizdraht isoliert bzw. getrennt ist. Im nächsten Schritt wurde die Spannungsversorgung mit dem Heizdraht auf beiden Seiten verbunden. Dieses wurde durch eine leitende Schraube erreicht. Des Weiteren wurde nun auf einer Seite eine Feder montiert um den Heizdraht spannen zu können. Auf der anderen Seite wurde dieser an der leitenden Schraube fixiert. Nun war der Heizdraht montiert und die Funktion Styropor Schneiden gewährleistet.