Arduino UNO: Board Anatomie
Autor: Prof. Dr.-Ing. Schneider
Abb. 1 zeigt die Hauptkomponenten des Arduino Uno R3.
RX, TX | Das sind die Sende- und Empfangspins der seriellen Schnittstelle (Universal AsynchronousReceiver Transmitter, UART).
Bevor der USB-Bus erfunden wurde, waren beispielsweise Mäuse und Modems per serieller Schnittstelle mit dem PC verbunden. Die Übertragungsgeschwindigkeit liegt in der Regel zwischen 1200 und 115ˇ200 Baud. Heute spielt der UART nur noch im Entwicklerbereich eine Rolle. |
TensorFlow ist ein Open-Source-Framework für maschinelles Lernen und künstliche Intelligenz von Google. Einsatz findet TensorFlow insbesondere bei Deep Learning Anwendungen wie Bilderkennung und Textverarbeitung wie Natural Language Processing oder Spracherkennung. | |
OpenCV (englische Abk. für Open Computer Vision) ist eine freie Programmbibliothek mit Algorithmen für die Bildverarbeitung und Computer Vision. Sie ist für die Programmiersprachen C, C++, Python und Java geschrieben und steht als freie Software unter den Bedingungen der Apache 2 License. | |
Im Gegensatz zu HTML, CSS und Javascript ist Python eine Allzwecksprache, so dass es für verschiedene Arten der Programmierung verwendet werden kann, nicht nur für die Webentwicklung. Dies kann die Backend-Entwicklung, das Erstellen von Software und das Schreiben von Skripts umfassen. | |
TensorRT ist ein Framework für maschinelles Lernen. Es wurde von NVIDIA herausgegeben, um auf deren Hardware KI Algorithmen zu verwenden. TensorRT wurde optimiert um auf NVIDIA GPUs ausgeführt zu werden. Dies ist vermutlich der schnellste Weg Algorithmen auszuführen. | |
Keras ermöglicht die schnelle Implementierung neuronaler Netzwerke für Anwendungen des Deep Learnings. Es handelt sich um eine Open-Source-Bibliothek, die in Python geschrieben ist und zusammen mit Frameworks wie TensorFlow oder Theano verwendet werden kann. | |
PyTorch ist zur Zeit eines der populärsten Frameworks zur Entwicklung und zum Trainieren von neuronalen Netzwerken. Es zeichnet sich vor allem durch seine hohe Flexibilität und die Möglichkeit aus, Standard-Python-Debugger einzusetzen. Dabei müssen keinerlei Abstriche bezüglich der Trainingsperformance gemacht werden. | |
Das Robot Operatong System 2 (ROS2) ist der Nachfolger von ROS1, einem Open-Source-Software-Framework, das sich in den letzten Jahren zu einem der beliebtesten Prototyping-Plattformen für die Entwicklung von Robotern entwickelt hat. |
Spezifikation
PC | NVIDIA® Jetson Nano™, PN: 3450 B01, 4 GB 64-bit LPDDR4 @ 25.6 GB, 64-bit Quad-Core ARM A57, 472 GFLOPS @5 W, 128 NVIDIA CUDA® GPU |
→ zurück zum Hauptartikel: Arduino UNO