Walkthrough all Matlab Code Used In This Project

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Tabelle 12: Storing input data
Name Application Description
storingcropsteeringandframesoncsvrgb.m

Storing steering values and recorded frames

Steering values are stored in a CSV file as well as their corresponding frames.
storingcropsteeringandframesoncsvrgb_calibrated.m

Storing steering values and calibrated recorded frames in RGB.

Steering values are stored in a CSV file as well as their corresponding calibrated frames in RGB.
Frames_conversion.m

Convert RGB frames to BW, gray, and Canny edge.

Video_conversion.m


speedlimit.m


storingcropsteeringandframesoncsvrgb_calibrated.m


Tabelle 8: Calibration
Name Application Description
Calibrationchecker.m


Calibrationchecker_video.m


test_camera_calibration.m


256by256frames.m


cali.m


calibration_256_256_script.m


calibration_500by220.m


calibration_500by220_final.m


calibration_with_one_image.m


test_extractedframes_256by256_calibrationpara.m


Bird_eye_view.m



Tabelle 8: Lane Trackin
Name Application Description
Lane_angle_tracking.m


Lane_tracking.m


Lane_tracking_lane_change.m


addinglanepliudot.m


Lane_tracking_lane_change.m


Tabelle 8: python libraries
Name Application Description
Jtest.py


Jtest0.py


Jtest01.py


Jtest02.py


Jtest2.py


Jtest4.py


Tabelle 8: autonomous driving
Name Application Description
autonomous_driving.m


autonomous_driving_lanetracking.m


RunningtheJetRacerAutonomouslyupdate.m


RunningtheJetRacerAutonomously.m


Tabelle 8: Models
Name Application Description
Improved_Classified_CNN_Model.mat


Improved_Regression_CNN_Model.mat


Improved_RGB_CNN_model.mat
RGB_CNN_model.mat
RGB_CNN_Regresssion_model.mat
RGB_RGBRect_CNN_Model.mat
RNN_model.mat
trainedNet.mat
Gray_CNN_Classification.mat
Gray_CNN_Regresssion_model.mat
MultiInput_CNN_Model_GrayOnly.mat
CannyEdge_CNN_Regresssion_model.mat
BW_CNN_Regresssion_model.mat
MultiInput_CNN_Model_BW.mat
trainedCNN_Model_1.mat trainedCNN_Model_2.mat trainedCNN_Model_3.mat
trained12vid.fig
Tabelle 8: Training
Name Application Description
Cleaned_RGB_CNN_Classify_model.m


Cleaned_RGB_RGBRect_CNN_Classify_model.m


Complete_CNN_Classification.m


RGB_CNN_Classify_model.m


RGB_CNN_model.m


RGB_CNN_Regression_model.m


RGB_LSTM_model.m


RGB_Pretrained_model.m


RGB_Pretrained_model_script.m


RGB_Reinforcementlearning_model.m


RGB_RNN_model.m


RGB_Transferlearning_model.m


RGBmodel.m


Cleaned_Gray_CNN_Classify_model.m


Gray_CNN_model.m


Gray_LSTM_model.m


Gray_Pretrained_model.m


Gray_Reinforcementlearning_model.m


Gray_RNN_model.m


Gray_Transferlearning_model.m


Graymodel.m


greendottraining.m


online_training.m


online_training_RNN.m


PretrainedNN.m


resnet_pretrained.m


ResNet18.m


ResNet18gray.m


ResNet18rgb.m


Resnet18trainonceperfram.m


traininglaneplusdot.m
Tabelle 8: .MAT files
Name Application Description
cameraParams.mat


cameraCalibrationParams.mat


cameraCalibrationParams0.mat


cameraCalibrationParams_singleangle.mat


calibration256by256.mat


Tabelle 8: zeigeMessdaten
Name Application Description
zeigeMessdaten.m


zeigeMessdaten_CNN_classify_model.m


zeigeMessdaten_CNN_Regression.m


zeigeMessdaten_grayscale.m


Messdaten2MAT.m


zeigeMessdaten.m