Das Geheimnis der Feder
→ zurück zur Übersicht: WS 24/25: Escape Game
Autor: | Sophie Koerner & Dorothea Tege |
Betreuer: | Prof. Göbel |
Einleitung
Escape Games haben sich als wirksame Methode zur Stärkung von Teamarbeit, Problemlösungsfähigkeiten und kritischem Denken. Ein Beispiel dafür ist das Spiel „Das Geheimnis der Feder“. Es stellt die Teilnehmenden vor die Herausforderung, eine präzise Gewichtsbalance zu ermitteln und die Funktionsweise eines sensorgesteuerten Systems zu testen.
Im Mittelpunkt des Spiels steht eine mechanische Anordnung. Eine Feder ist an einem Stativ befestigt, an dem ein Teller hängt. Die Spieler müssen die optimale Masse bestimmen und auf den Teller legen, um ein stabiles Gleichgewicht zu erreichen. So wird experimentell das Hooke‘ sche Gesetz getestet.
Eine LED-Anzeige liefert visuelle Rückmeldungen. Zwei rote und gelbe LEDs signalisieren Abweichungen vom optimalen Gewicht. Eine grüne LED zeigt an, dass die gewünschte Position mit der richtigen Masse erreicht wurde. Ein Ultraschallsensor misst die Distanz zwischen der Unterseite des Tellers und dem Sensor. Ziel des Spiels ist es, das exakte Gewicht zu identifizieren, das die optimale Balance im System sichert.
Das Escape Game „Das Geheimnis der Feder“ ist Teil einer Reihe von miteinander verknüpften Spielen. Das Lösen eines Spiels ist notwendig, um auf die nachfolgenden Herausforderungen zugreifen zu können. Dieses Konzept fördert die kognitive Flexibilität und die Zusammenarbeit innerhalb der Gruppe.
Anforderungen
ID | Inhalt | Prio | Ersteller | Datum | Geprüft von | Datum |
---|---|---|---|---|---|---|
1 | Das Escape-Game muss in 5 min lösbar sein | Hoch | Sophie Koerner | 03.10.2024 | Dorothea Tege | 03.10.2024 |
2 | Der verbaute Sensor gibt muss eine Distanz messen können | Hoch | Sophie Koerner | 03.10.2024 | Dorothea Tege | 03.10.2024 |
3 | Die Distanz zum Teller wird durch ein LED-Ampelsystem visualisiert | Hoch | Sophie Koerner | 03.10.2024 | Dorothea Tege | 03.10.2024 |
4 | Wenn das gewählte Gewicht korrekt ist, leuchtet die LED in grün. | Hoch | Sophie Koerner | 03.10.2024 | Dorothea Tege | 03.10.2024 |
5 | Das Experiment kann entweder durch Ausprobieren (leicht) oder Berechnen (mittel/schwer) erfolgen. | Hoch | Sophie Koerner | 03.10.2024 | Dorothea Tege | 03.10.2024
|
6 | Das Experiment darf nur mit den gegebenen Hilfsmitteln bearbeitet werden: Zettel, Stift und Taschenrechner. | Mittel | Sophie Koerner | 03.10.2024 | Dorothea Tege | 03.10.2024 |
7 | Das System anwenderfreundlich sein. | Mittel | Sophie Koerner | 03.10.2024 | Dorothea Tege | 03.10.2024 |
8 | Die Steuerung des Arduino-Systems erfolgt über Simulink und muss ohne Verzögerung und zuverlässig funktionieren. | Hoch | Sophie Koerner | 03.10.2024 | Dorothea Tege | 03.10.2024 |
10 | Das Escape-Game muss in einen Schuhkarton passen. | Mittel | Sophie Koerner | 03.10.2024 | Dorothea Tege | 03.10.2024 |
Funktionaler Systementwurf/Technischer Systementwurf
Funktionaler Systementwurf
Für das Escape Game „Das Geheimnis der Feder“ wird eine Feder an einem Stativ befestigt und ein Teller darunter gehängt. Spieler müssen die optimale Masse ermitteln, entweder durch Ausrechnen der angegebenen Formel (Schwierigkeisgrad Mittel) oder durch Ausprobieren mit Gewichten, die auf den Teller gelegt werden. Das System beinhaltet eine LED-Anzeige, die visuelle Rückmeldungen in Form von roten, gelben und grünen LEDs gibt. Die grüne LED zeigt den korrekten Bereich an. Die gelben und roten LEDs werden verwendet, um Abweichungen vom optimalen Gewicht zu signalisieren. Ein Ultraschallsensor misst kontinuierlich die Distanz zwischen der Unterseite des Tellers und dem Sensor.
Technischer Systementwurf
Das Escape Game „Das Geheimnis der Feder“ besteht aus mehreren integrierten Komponenten, die zusammenarbeiten. Im Zentrum steht eine mechanische Anordnung, einer Feder mit einem Teller an einem Stativ. Der Ultraschallsensor ist am Stativfuß positioniert und misst die Distanz zwischen der Unterseite des Tellers und dem Sensor. Der Arduino verarbeitet die Daten des Sensors und steuert die LED-Anzeige, die aus zwei roten LEDs, zwei gelben LEDs und einer grünen LED besteht. Die roten und gelben LEDs signalisieren Abweichungen vom optimalen Gewicht in positiver und negativer Richtung, während die grüne LED anzeigt, dass das richtige Gewicht erreicht wurde. Die gesamte Hardware wird durch einen durchsichtigen Kasten mit Aussparung für den Sensor geschützt. Die Software wird mit Hilfe von Simulink implementiert und in Echtzeit bearbeitet.
Materialliste
Nr. | Anz. | Beschreibung |
---|---|---|
1 | 1 | Funduino Arduino UNO R3 |
2 | 1 | IR-Abstandssensor Sharp GP2Y0A41SK0F |
3 | 3 | Widerstand 200Ohm |
4 | 1 | Steckbrett |
5 | 4 | Jumper Kabel männlich/weiblich, 20cm |
6 | X | Jumper Kabel männlich/männlich, 20cm |
7 | 5 | LEDs (2x rot, 2x gelb, 1x grün) |
8 | 1 | Stativfuß MF |
9 | 1 | Stativstange 25 cm, 10 mm Durchmesse |
10 | 1 | Muffenblock |
11 | 1 | Steckachse |
12 | 2 | Schraubenfeder 25 N/m (inkl. Ersatzfeder) |
13 | 1 | Hängegewichte-Set |
14 | 1 | Computer mit Simulink und USB-Anschluss für Arduino |
15 | 1 | Netzteil + Kabel |
16 | 1 | Gehäuse zum Schutz der Hardware |