Membran Drucksensor FSR402

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Abb. 1: Membran Drucksensor FSR402
Autorin: Dorothea Tege
Studiengang: Business and Systems Engineering
Modul: BSE-M-2-1.03, Hausarbeit in Angewandte Informatik gehalten von Prof. Dr.-Ing. Schneider
Semester: Sommersemester 2024
Abgabetermin: 28.07.2024

Einführung

In diesem Projekt liegt der Fokus auf dem Aufbau und der Integration eines FSR402 (Force Sensitive Resistor) Sensors mit verschiedenen Hardwarekomponenten und der Programmierung in Simulink. Der FSR402 ist ein druckempfindlicher Sensor, der durch eine Änderung seines Widerstands auf ausgeübten Druck reagiert. Diese Widerstandsänderung wird in eine analoge Spannung umgewandelt, die proportional zur Druckkraft ist. Das Projekt umfasst die Verbindung des Sensors mit anderer Hardware, um ein funktionales System zu erstellen, und die Programmierung in Simulink, um die analoge Spannung zu erfassen und in Kraftwerte zu konvertieren. Ziel ist es, ein System zu entwickeln, das präzise Kraftmessungen ermöglicht und diese in Echtzeit verarbeitet.

Aufgabenstellung

Messen Sie die Kraft mittels Membransensor.

  • Thema/Fragestellung: Messung der Kraft mit dem Membransensor FSR402
  • Hypothese: Die Kraft lässt sich im Bereich von 0.1 N bis 10 N fehlerfrei messen.
  • Einordnung in den Lehrplan: Der Force Sensitive Resistor (FSR) ist ein wichtiger Bestandteil in vielen technischen und informatischen Anwendungen, da er die Messung von Kräften oder Druckveränderungen in verschiedenen Systemen ermöglicht. Er wird in Bereichen wie der Sensortechnik, Robotik und Mensch-Maschine-Interaktion verwendet, um präzise Daten über physische Kräfte zu sammeln und zu verarbeiten. In der Lernveranstaltung „Angewandte Informatik“ wird das Ziel verfolgt, Simulink mit Hardware zu integrieren und mathematische Programmierung zu nutzen. Durch diese Lernveranstaltung wird es möglich, Sensoren wie den FSR in Simulink einzulesen und zu steuern, was praktische Anwendungen in der Datenverarbeitung und Steuerungstechnik eröffnet.

Projektbeschreibung

Tabelle 2: Materialliste
# Anzahl Material
1 1 PC mit MATLAB/Simulink R2022b
2 1 FSR402
3 1 Arduino Uno R3
4 1 Streckbrett
5 5 Jumper Kabel, männlich/männlich, 20 cm
6 1 LCD-Dispaly
7 1 Buzzer

Beschreibung Funktionsweise der verwendeten Hard- und Software

  • Arduino Uno R3: Der Arduino Uno R3 ist ein Mikrocontroller, der auf einem ATmega328P basiert. Er dient als Steuerungssystem aller verbauten Hardwarebausteine.
  • FSR402: Der Membransensor ist ein Drucksensor (Force Sensing Resistor), der den Widerstand ändert, wenn Druck ausgeübt wird. Er wird verwendet, um den Druck zu messen.
  • Simulink R2022b: Das Programm ist eine grafische Programmiersoftware von MathWorks. Simulink dient zur Modellierung, Simulation und Analyse der angeschlossenen Hardware.
  • LCD-Display: Der Display wird für die Anzeige der Kraftmessung in N verwendet.
  • Steckbrett: Das Steckbrett dient zur Entwicklung von Schaltungen und ermöglicht das einfachen Einstecken und Verbinden von elektronischen Komponenten ohne Löten.
  • Jumperkabel: Die flexiblen Kabel verbinden die einzelnen Komponenten auf dem Steckbrett.
  • Buzzer: Der Buzzer erzeugt Töne, wenn die Kraft auf dem Membransensor konstant ist.

Technische Daten

Messbereich 0.1 N - 10 N
Versorgungsspannung 3.3 V .. 5 V
Wiederholgenauigkeit ±2 %
Widerstand ohne Belastung 10 MΩ
Kraftempfindlichkeitsbereich 1 kΩ
Gewicht 0.5 g
Getriebe Kunststtoff
Arbeitstemperatur -30 °C .. +70 °C
Dicke 0.45 mm
Durchmesser 18.28 mm

Pinbelegung

Pin Belegung Signal
1 Versorgungsspannung VCC 5 V
2 Analoger Eingang (A0) 0.3 V .. 5 V
3 Masse (GND) 0 V

Versuchsaufbau und Durchführung

Versuchsaufbau

Abb. 2: Anschlussplan
Abb. 2: Schaltplan
Abb. 4: Foto des Versuchsaufbaus

Der Versuchsaufbau wird durch einen Schaltplan (Abb. 2), Anschlussplan (Abb. 3) und Foto des Aufbaus (Abb. 4) dokumentiert.

Versuchsdurchführung

Abb. 5: Simulink-Modell

Das Modell zur Datenverarbeitung wurde gemäß Abb. 5 in Simulink aufgebaut. Die Messdaten wurden aufgezeichnet. Ein Video der Versuchsdurchführung findet sich hier.

Modelleinstellungen: Arduino Uno, Solver: Fixed-step, discrete, Abtastrate: 0,001 s

Versuchsbeobachtung

Abb. 6: Darstellung des Rohsignals des IR-Entfernungssensors (rote Kurve)
Abb. 7: Darstellung von dynamischen Messwerten des IR-Entfernungssensors

Das Signal des Sensors weist alle 40 ms systematische Ausreisser auf (vgl. Abb. 6, rote Kurve).

Auswertung

Die Messhypothese wurde verworfen. Der Sensor weist systematische Messwertausreisser auf.

Die Ausreisser lassen sich mit einem Signalfilter eliminieren. Hierzu eignet sich ein Rangordnungsfilter (z. B. Median-Filter). Das Filter wird hierzu auf eine Fensterbreite von 30 Werten eingestellt. Das zufriedenstellende Filterergebnis für statische Werte zeigt Abb. 6 als blaue Kurve. Es konnte mit dynamische Werten verifiziert werden (vgl. Abb. 7). Das Datenblatt ([2, S. 6]) belegt die Messungen und bezeichnet die Messausreisser als "instabile Ausgabe" für maximal 5 ms alle 40 ms. Mit 50 Werten erhöht sich die Filterwirkung, es entsteht jedoch ein Delay von 10 ms. Mit 10 Werten ist die Filterwirkung zu gering.

Zusammenfassung und Ausblick

  • Zusammenfassung der Kapitel 1-4
  • Diskussion der Ergebnisse
  • Ausblick
  • Selbstreflexion/Lessons learned

Ergebnisvideo

Binden Sie hier Ihr Ergebnisvideo ein.

Anleitung: Videos im Wiki einbinden

Lernzielkrontrolle

Beantworten Sie in Ihrem Artikel die Lernzielkontrollfragen.

Literatur

Zitieren Sie nach DIN ISO 690:2013-10.

https://cdn.sparkfun.com/assets/8/a/1/2/0/2010-10-26-DataSheet-FSR402-Layout2.pdf

Anhang

  • Datenblätter
  • Simulink-Modell
  • Originaldateien (PAP, Schaltplan,... )

→ zurück zum Hauptartikel: BSE Angewandte Informatik SoSe24 | Hausarbeit SoSe24