SigSys15 Start- und Stopplinienerkennung
Autor:
Betreuer: Prof. Schneider
Motivation
Eine Aufgabe beim Carolo Cup ist der "Rundkurs mit Hindernissen". Hierbei ist eine Startlinie zu überfahren und an eienr Stopplinie zu halten.
Ziel
Die Start- und Stoppline soll robust erkannt und unterschieden werden.
Aufgabe
- Zeichnen Sie die Kamerasicht eines Rundkurses auf.
- Lesen Sie diesen als Endlosschleife in Matlab ein.
- Identifizieren Sie während der virtuellen Fahrt Start- und Stopplinien mit Matlab.
- Vermeiden Sie Fehler ("false-positives").
- Optimieren Sie die Rechenzeit Ihres Algorithmus.
Lösungen
Vorverarbeitende Maßnahmen
Video in einzelne Frames aufteilen
Video-Dateien belegen in Matlab sehr viel Arbeitsspeicher. Um während der eigentlichen Bildverarbeitung für Entlastung zu sorgen, ist es allerdings möglich das Video in seine einzelnen Frames zu zurlegen und diese jeweils abzuspeichern. Diese Bilder können dann während der Verarbeitung geladen werden. Auf diese Weise wird bei der Verarbeitung nicht mehr Speicher benötigt als für diesen Durchlauf erforderlich. Unter realen Bedingungen spielen diese Umstände allerdings keine Rolle, da es unsinnig wäre von der Kamara aufgenommene Bilder erst zwischenzuspeichern, um sie anschließend wieder zu laden. Hierbei könnten die Bilddaten direkt verarbeitet werden.
Der Arbeitsschritt das Video in Bilder zu teilen wird durch die Funktion Video2Img.m durchgeführt. Diese Funktion übernimmt dabei zusätzlich die Aufgabe den einzelnen Frames Namen zu geben anhand derer sie während der noch folgenden Schritte identifiziert werden können. Diese Namen setzen sich aus einer Zeichenkette zusammen deren Elemente "Frame_" und eine fortlaufende vierstellige Nummer z.B. "0001" sind.
Bild für die Verarbeitung vorbereiten
Bevor mit der eigentlichen Bildverarbeitung begonnen werden kann sind noch einige Schritte nötig. Dazu gehört auch das nächste zu verarbeitende Bild auszuwählen und zu laden. Dies geschieht anhand der fortlaufenden Nummerieriung die zuvor durchgeführt wurde.
Im Anschluss daran wird das Bild mit Hilfe der Kameraparameter VRM_Calib_15_05_14 entzerrt. Damit ist sicher, dass horizontale Linien im Bild auch wirklich horizontal sind und nicht durch die Verzerrung der Kamera gewölbt dargestellt sind. Der Effekt tritt zwar in den Randbereichen des Bildes stärker auf als in der Bildmitte, jedoch lässt sich auf diese Weise ausschließen, dass die Verzerrung einen Einfluss auf die weiteren Ergebnisse hat. Dieser Schritt kann bei älteren Matlab Versionen als 2014b zu Komplikationen führen, da diese womöglich die verwendete Funktion nicht bereitstellen.
Die Frames liegen zunächst im RGB-Format vor, welches für das weitere Vorgehen nicht benötigt wird. Die Aufgabenstellung erfordert das Suchen von weißen Linien auf schwarzem Hintergrund. Die überflüssigen Information, die ein Farbbild enthält, werden zunächst durch eine Konvertierung in ein Graustufenbild reduziert. Danach folgt eine Reduktion der Daten durch die Funktion Gray2BW.m, die die Konvertierung von Graufstufen zu einem Schwarz-Weiß-Bild vornimmt. Das Fahrzeug selbst ist im unteren Drittel des Bildes nach diesem Schritt immer noch zu sehen. Um "mitfahrende weiße Linien" zu verhindern, wird der Teil des Bildes, der durch das Fahrzeug verdeckt wird ausmaskiert. Dies geschieht mit Hilfe des Bildes Maske_Fahrzeug. Zuletzt werden durch Anwenden des Sobel-Operators die Kanteninformationen aus dem Bild gewonnen.
Einlesen in Endlosschleife
Die Aufgabenstellung erfordert, dass die Daten in einer Endlosschleifen eingelesen werden. Dies wird durch die hier aufgeführten Codeabschnitte umgesetzt. Die Funktion Start_und_Stopplinienerkennung beginnt nach einigen Initialisierungen mit einer while-Schleife, die niemals enden kann. Der nächste Frame wird anschließend geladen bevor die Bildverarbeitung stattfindet, die im Folgenden näher beschrieben wird.
%% In Endlosschleife über Bilder laufen
while 1 % Endlosschleife über alle Frames ohne Ende
Frame_Name = ['Frame_',num2str(Frame_Counter(1)), ... % Bildname bestimmen
num2str(Frame_Counter(2)),num2str(Frame_Counter(3)), ... % Zusammensetzung aus Elementen des Arrays "Frame_Counter"
num2str(Frame_Counter(4))];
Nach der Bildverarbeitung wird ein Zähler für die Frames inkrementiert. Dieser besteht aus 4 Variablen, da ebensoviele zuvor für die Indentifikation des Frames verwendet wurden. Zwar ließe sich dies auch durch eine Variable erledigen, jedoch würde dies den Verlust der führenden Nullen im Namen des Frames bedeuten. Wenn der letzte Frame erreicht wurde, wird der Zähler für die Frames zurückgesetzt, sodass beim nächsten Schleifendurchlauf wieder das erste Bild geladen wird.
%% Frame hochzählen
Frame_Counter(4) = Frame_Counter(4) + Zeitschritte; % z.B. '+2': 2*(1/30) Sekunden zwischen den Bildern, da 30 Frames/sek
if Frame_Counter(4) == 10 % Auswirkung von letzter Stelle prüfen, daher nur Zeitschritte 1;2;5;10 erlaubt
Frame_Counter(4) = 0; % Letzte Stelle resetten
Frame_Counter(3) = Frame_Counter(3) + 1; % Dafür 3. Stelle inkrementieren
if Frame_Counter(3) == 10 % Auswirkung auf 2. Stelle prüfen
Frame_Counter(3) = 0; % 3. Stelle resetten
Frame_Counter(2) = Frame_Counter(2) + 1; % 2. Stelle inkrementieren
if Frame_Counter(2) == 10 % Auswirkung auf 1. Stelle prüfen
Frame_Counter(2) = 0; % 2. Stelle resetten
Frame_Counter(1) = Frame_Counter(1) + 1; % 1. Stelle inkrementieren
end
end
end
%% Zurücksetzen wenn alle Frames durchlaufen wurden
if Frame_Counter(1) * 1000 + Frame_Counter(2) * 100 + ... % Wenn alle Frames durchlaufen wurden
Frame_Counter(3) * 10 + Frame_Counter(4) >= 2331
Frame_Counter(1) = 0; % alle Zähler zurücksetzen und von vorne beginnen
Frame_Counter(2) = 0;
Frame_Counter(3) = 0;
Frame_Counter(4) = 0;
end
Algorithmus zur Linienerkennung
Laufzeitbetrachtung
Die Abbildung zeigt eine Laufzeitmessung bei der Ausführung der Funktion Start_und_Stopplinienerkennung.m, die die wesentliche Bildverarbeitung durchführt. Hierbei wurde die in Matlab integrierte Funktion für Laufzeitmessungen verwendet. Da die Bildverarbeitung in einer Endlosschleife ausgeführt wird, musste das Programm manuell gestoppt werden, um zu diesem Ergebnis zu gelangen. Anhand einiger markanter Funktionen, die nur einmalig während eines Schleifendurchlaufs aufgerufen werden, lässt sich allerdings erkennen, wie viele Frames in dieser Zeit verarbeitet wurden.
Zu diesen Funktionen zählen Ausgabe.m und Gray2BW.m. Beide wurden bei dieser Messung 47 mal aufgerufen. Demzufolge wurden 47 Frames bis zu diesem Zeitpunkt verarbeitet. Bei einer Laufzeit von ca. 98 Sekunden erscheint dies relativ wenig, jedoch muss beachtet werden, dass nur ein Teil des Codes die wesentliche Bildverarbeitung durchführt. Dieser Code ist in Start_und_Stopplinienerkennung.m selbst enthalten und kann daher keiner Unterfunktion zugeordnet werden. Die Zeit, die das Programm nicht auf Unterfunktionen verwendet, ist in der Abbildung als "Self Time" aufgeführt und beträgt in diesem Fall 0,243 Sekunden. Der Algorithmus, der nach den Linien sucht kann bei der Laufzeitbetrachtung folglich vernachlässigt werden, da sich hier eine durchschnittliche Ausführzeit pro Frame von 0,243 / 47 = 0,005 Sekunden ergibt. Größter "Zeitfresser", der zwingend nötig ist, ist die Funktion Gray2BW.m mit 7,6 Sekunden.
Die Ausgabe hingegen dient nur dazu die Ergebnisse zu veranschaulichen. Ihre Ausführung hat keinen Einfluss darauf ob und wo Linien gefunden werden. Ohne diese Funktion blieben von den 98 Sekunden Gesamtzeit gerade einmal ca. 12 Sekunden übrig. Dies würde pro Frame immer noch eine Zeit von 0,25 Sekunden beanspruchen. Dieser Wert liegt zwar immer noch über der Zeit zwischen 2 Frames, würde aber wahrscheinlich schon ausreichen, um Linien während der Fahrt erkennen zu können. Hierbei würden zwar einige Frames ungenutzt bleiben, aber da eine Linie im schlimmsten Fall mit einer Verspätung von 0,25 Sekunden erkannt wird, könnte immer noch mit dem Anhalten des Fahrzeugs darauf reagiert werden.
Darüber hinaus sollte noch erwähnt werden, dass es sich bei dieser Messung um Matlab Code handelte. Matlab bietet zwar dem Benutzer eine sehr intuitive Sprache an, jedoch ist diese im Hinblich auf Laufzeit nicht optimal. Würde stattdessen C-Code zum Einsatz kommen, könnte damit noch eine wesentlich Beschleunigung erzielt werden, sodass deutlich weniger oder womöglich gar keine Frames mehr ungenutzt bleiben, wie bei der zuvor beschriebenen Ausführzeit pro Frame von 0,25 Sekunden.
Nachverarbeitende Maßnahmen
Da die gleichzeitige Ausführung von Bearbeitung und Ausgabe der Ergebnisse die Laufzeit des Programms massiv beeinflusst wie dem Kapitel "Laufzeitbetrachtung" zu entnehmen ist, werden diese beide Kompenenten in diesem Schritt voneinander getrennt.
Weblinks
Carolo Cup 2012 - Spatzenhirn (Uni Ulm)
→ zurück zum Hauptartikel: Signalverarbeitende Systeme SoSe2015