ARD VIB 01 - Piezo Vibrationssensor
Autor: | Niklas Reeker |
Studiengang: | Business and Systems Engineering |
Modul: | BSE-M-2-1.03, Hausarbeit in Angewandte Informatik |
Betreuender Professor: | Prof. Dr.-Ing. Schneider |
Semester: | Sommersemester 2024 |
Abgabetermin: | 28.07.2024 |
Einführung
Der Piezo-Vibrationssensor ARD_VIB_01 wird zur Erfassung und Analyse von Vibrationen genutzt. Diese Vibrationen erzeugen durch den piezoelektrischen Effekt ein Spannungssignal, das proportional zur Stärke der Vibrationen ist. Solche Sensoren finden Anwendung in vielen Bereichen, von der Maschinenüberwachung bis zur Erdbebenforschung. [1]
Dieser Artikel behandelt die technischen Spezifikationen, die Einrichtung, die Durchführung von Messungen sowie die Analyse der Ergebnisse des ARD_VIB_01. Ein besonderer Fokus liegt dabei auf der Integration mit Arduino und Simulink, um präzise und zuverlässige Daten zu erhalten. [1] [2]
Aufgabenstellung
Messen Sie mit dem Piezo Vibrationssensor ARD VIB 01 die Stärke der auf den Sensor einwirkenden Vibrationen.
Anforderungen | |||||||||||||||||||||||||||
|
- Thema/Fragestellung: Bestimmung der Vibrationsintensität mittels ARD VIB 01, Arduino und Simulink
- Hypothese: Die Messung von Vibrationen mittels des ARD_VIB_01 Sensors erfolgt zuverlässig und fehlerfrei
- Einordnung in den Lehrplan: Die Anwendung des ARD_VIB_01 Sensors ist im Bereich der Messtechnik und Signalverarbeitung in der Informatik von Bedeutung. Sie ermöglicht praktische Erfahrungen in der Implementierung von Vibrationssensorik, die in Bereichen wie Maschinenüberwachung und Sicherheitsprüfungen weit verbreitet ist. Anhand dieses Praxisbeispiels werden in der Lernveranstaltung "Angewandte Informatik" folgende Lernziele vermittelt:
- mit der Versionskontrolle SVN nachhaltig Quelltext (Simulink) entsprechend der Programmierrichtlinien schreiben und sichern.
- die Mikrocontrollerplattform Arduino modellbasiert mit Simulink programmieren, so dass Sensoren eingelesen und Aktoren angesteuert werden können. [2]
Des Weiteren wird ein tiefes Verständnis für die Sensortechnologie und ein Aufbau von einer Schaltung mit dieser gelehrt.
Projektbeschreibung
Ein Piezo-Vibrationssensor besteht aus einem piezoelektrischen Element, das mechanische Vibrationen in elektrische Signale umwandelt. Diese Signale können zur Überwachung von Maschinen, zur Strukturüberwachung oder zur Erkennung von Erdbeben verwendet werden. Der ARD_VIB_01 Sensor nutzt diese Technologie, um eine präzise und wartungsfreie Vibrationsüberwachung zu ermöglichen. [1]
Im Folgenden ist eine Liste mit den zum Aufbau der Schaltung benötigten Komponenten dargestellt:
# | Anzahl | Material |
---|---|---|
1 | 1 | Arduino Uno R3 |
2 | 1 | ARD_VIB_01 Piezo-Vibrationssensor |
3 | 1 | LCD Modul 16x02 I2C |
4 | 1 | PC mit MATLAB/Simulink R2023b |
5 | 1 | Steckbrett |
6 | 5 | Jumper Kabel, männlich/männlich, 20 cm |
Beschreibung Funktionsweise der verwendeten Hard- und Software
In diesem Abschnitt werden die in Tabelle 2 aufgelisteten Hard- und Softwarekomponenten näher erläutert.
Arduino Uno R3
Der Arduino Uno R3 ist ein Mikrocontroller-Board, das auf dem ATmega328P basiert. Es verfügt über 14 digitale Ein-/Ausgangspins, 6 analoge Eingänge, einen 16 MHz Quarzoszillator, eine USB-Schnittstelle, eine Strombuchse, eine ICSP-Stiftleiste und einen Reset-Button. Der Arduino wird über die Arduino IDE oder Matlab Simulink in Verbindung mit dem Arduino Hardware Support Package programmiert und ist in der Lage, verschiedene Sensoren und Module anzusteuern und Daten zu verarbeiten. [4] [5]
ARD_VIB_01 Piezo-Vibrationssensor
Der ARD_VIB_01 ist ein Piezo-Vibrationssensor, der mechanische Vibrationen in elektrische Signale umwandelt. Der Sensor besteht aus einem piezoelektrischen Material, das bei mechanischer Belastung elektrische Spannung erzeugt. Diese Spannung kann vom Arduino erfasst und zur Analyse von Vibrationsmustern verwendet werden. Der Sensor eignet sich für Anwendungen wie die Überwachung von Maschinenzuständen oder die Erdbebendetektion. [1]
LCD Modul 16x02 I2C
Das LCD Modul 16x02 I2C ist ein Display-Modul mit 16 Spalten und 2 Zeilen. Es verwendet die I2C-Schnittstelle, die nur zwei Datenleitungen benötigt, wodurch die Anzahl der benötigten Pins am Arduino reduziert wird. Das Modul ermöglicht die Darstellung von Textinformationen, wie z.B. Benutzername und RFID-Tag-ID. Durch die Integration mit dem Arduino lassen sich die auf dem LCD angezeigten Informationen einfach programmieren und anpassen. [7]
Simulink R2023b Simulink R2023b ist eine grafische Programmierumgebung zur Modellierung, Simulation und Analyse dynamischer Systeme. In diesem Projekt wird Simulink verwendet, um die vom Arduino empfangenen RFID-Daten zu visualisieren und zu verarbeiten. Mit Simulink lassen sich verschiedene Algorithmen zur Datenverarbeitung implementieren und Simulationen durchführen, um das Verhalten des Systems zu analysieren und zu optimieren. [4]
Steckbrett
Ein Steckbrett (Breadboard) ist ein wiederverwendbares Prototyping-Tool, das es ermöglicht, elektronische Schaltungen ohne Löten aufzubauen. Es besteht aus einer Vielzahl von Löchern, in die Komponenten und Verbindungsdrähte gesteckt werden können, um elektrische Verbindungen herzustellen. Das Steckbrett erleichtert das Experimentieren mit verschiedenen Schaltungen und das schnelle Anpassen von Verbindungen, ohne dass dauerhafte Änderungen vorgenommen werden müssen. [8]
Technische Daten
Nachfolgend sind die Technischen Daten des Primärsensors aufgetragen:
Modell | Piezoelektronischer keramischer Chip |
Messbereich | 0,1 mm/s bis xx mm/s |
Messwerte | Analog |
Betriebsspannung | Keine |
Größe | 36 x 20 x 14 mm |
Betriebstemperatur | -10 bis 70°C |
Pinbelegung
Im Folgenden wird die Pinbelegung des ARD_VIB_01 Piezo-Vibrationssensors und dessen Verbindung zum Arduino Uno R3 dargestellt. Diese Tabelle zeigt, welche Pins des Vibrationssensors mit welchen Pins des Arduino verbunden werden müssen, um eine korrekte Funktion zu gewährleisten.
Pin | Belegung | Signal |
---|---|---|
1 | GND | GND |
2 | - | NC |
3 | A0 | Analog Pin A0 |
Diese Belegung stellt sicher, dass der Vibrationssensor korrekt mit dem Arduino verbunden ist, sodass die Kommunikation und Datenerfassung zwischen den beiden Geräten reibungslos funktioniert. |}
Funktionsweise Primärsensor und Messschaltung
In diesem Kapitel werden der Primärsensor und die Messschaltung beschrieben. Dabei wird unter anderem auf den Aufbau und die Funktionsweise des Sensors eingegangen.
Primärsensor: ARD_VIB_01 Piezo-Vibrationssensor
Der ARD_VIB_01 Piezo-Vibrationssensor besteht aus einem piezoelektrischen Material, typischerweise Quarz oder eine polykristalline Keramik, die bei mechanischer Verformung elektrische Ladung erzeugt. Abbildung 5 zeigt die Struktur des Sensors im Ruhezustand. Die roten und schwarzen Kreise repräsentieren die positiven und negativen Ionen, die in einem Gleichgewichtszustand angeordnet sind.
Wenn der Sensor Vibrationen oder mechanische Belastungen ausgesetzt ist (siehe Abbildung 6), verschieben sich die Ionen, wodurch eine elektrische Spannung entsteht. Diese Spannung ist proportional zur Stärke und Frequenz der Vibrationen. Der Sensor erfasst diese Spannung und wandelt sie in ein analoges Signal um, das vom Arduino zur weiteren Verarbeitung gelesen werden kann. [12]]] [13]]], abgerufen am 26.07.2024</ref>]]
Messschaltung
Die Messschaltung umfasst die Kontakte des ARD_VIB_01, sowie die Bauteile auf der Adapterplatine welche direkt mit dem Arduino verbunden sind. [13]
Versuchsaufbau und Durchführung
Versuchsaufbau
Der Versuchsaufbau wird durch einen Schaltplan (Abb. 2), Anschlussplan (Abb. 3) und Foto des Aufbaus (Abb. 4) dokumentiert.
Versuchsdurchführung
Das Modell zur Datenverarbeitung wurde gemäß Abb. 5 in Simulink aufgebaut. Die Messdaten wurden aufgezeichnet. Ein Video der Versuchsdurchführung findet sich hier.
Modelleinstellungen: Arduino Uno, Solver: Fixed-step, discrete, Abtastrate: 0,001 s
Versuchsbeobachtung
Das Signal des Sensors weist alle 40 ms systematische Ausreisser auf (vgl. Abb. 6, rote Kurve).
Auswertung
Die Messhypothese wurde verworfen. Der Sensor weist systematische Messwertausreisser auf.
Die Ausreisser lassen sich mit einem Signalfilter eliminieren. Hierzu eignet sich ein Rangordnungsfilter (z. B. Median-Filter). Das Filter wird hierzu auf eine Fensterbreite von 30 Werten eingestellt. Das zufriedenstellende Filterergebnis für statische Werte zeigt Abb. 6 als blaue Kurve. Es konnte mit dynamische Werten verifiziert werden (vgl. Abb. 7). Das Datenblatt ([2, S. 6]) belegt die Messungen und bezeichnet die Messausreisser als "instabile Ausgabe" für maximal 5 ms alle 40 ms. Mit 50 Werten erhöht sich die Filterwirkung, es entsteht jedoch ein Delay von 10 ms. Mit 10 Werten ist die Filterwirkung zu gering.
Zusammenfassung und Ausblick
- Zusammenfassung der Kapitel 1-4
- Diskussion der Ergebnisse
- Ausblick
- Selbstreflexion/Lessons learned
Ergebnisvideo
Binden Sie hier Ihr Ergebnisvideo ein.
Anleitung: Videos im Wiki einbinden
Lernzielkrontrolle
Beantworten Sie in Ihrem Artikel die Lernzielkontrollfragen.
Lernzielkontrollfragen |
|
Literatur
Zitieren Sie nach DIN ISO 690:2013-10.
- ↑ 1,0 1,1 1,2 1,3 1,4 1,5 https://www.reichelt.de/arduino-piezo-vibrationssensor-ard-vib-01-p316345.html?&nbc=1, abgerufen am 26.07.2024
- ↑ 2,0 2,1 https://wiki.hshl.de/wiki/index.php/BSE_Angewandte_Informatik_-_SoSe24, abgerufen am 26.07.2024
- ↑ https://wiki.hshl.de/wiki/index.php/Arduino:_Bibliothek_einbinden, abgerufen am 26.07.2024
- ↑ 4,0 4,1 https://ch.mathworks.com/de/hardware-support/arduino.html, abgerufen am 13.07.2024
- ↑ https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf, abgerufen am 26.07.2024
- ↑ https://wiki.hshl.de/wiki/index.php/LCD_Modul_16x02_I2C, abgerufen am 26.07.2024
- ↑ https://wiki.hshl.de/wiki/index.php/LCD_Modul_16x02_I2C, abgerufen am 26.07.2024
- ↑ https://www.az-delivery.de/products/breadboard, abgerufen am 26.07.2024
- ↑ https://www.pollin.de/media/52/d1/51/1701729549/D811421-D.pdf, abgerufen am 26.07.2024
- ↑ https://cdn-reichelt.de/documents/datenblatt/A300/SEN-VIB01_ANLEITUNG_2022-01-07.pdf, abgerufen am 26.07.2024
- ↑ 11,0 11,1 https://www.youtube.com/watch?v=Z0wZv8aDwlY, abgerufen am 26.07.2024
- ↑ https://vetsuisse.com/vet-iml/lernmodule/htmls/slide.html?radiosurfvet%7Cradgeneral%7Csonography%7Csonobasics%7C2, abgerufen am 26.07.2024
- ↑ 13,0 13,1 13,2 https://vetsuisse.com/vet-iml/lernmodule/htmls/slide.html?radiosurfvet%7Cradgeneral%7Csonography%7Csonobasics%7C2, abgerufen am 26.07.2024
Anhang
Datenblätter
Simulink-Modell
Originaldateien
- PAP
- Schaltplan,...
→ zurück zum Hauptartikel: BSE Angewandte Informatik SoSe24 | Hausarbeit SoSe24