Grove - Wassersensor
Autor: | Denim Hilz |
Studiengang: | Business and Systems Engineering |
Modul: | BSE-M-2-1.03, Hausarbeit in Angewandte Informatik gehalten von Prof. Dr.-Ing. Schneider |
Semester: | Sommersemester 2024 |
Abgabetermin: | 28.07.2024 |
Einführung
Aufgabenstellung
In diesem Artikel wird der Grove Water Sensor näher erläutert, die Implementierung in Matlab/Simulink aufgezeigt und die Kalibrierung und Filterung vorgestellt. Der Grove Water Sensor dient zur Erkennung von Wasser und zur Messung des Wasserstands. Einsatzbereiche sind unter anderem das Aufspüren von Wasserlecks, die Steuerung automatischer Bewässerungssysteme, die Überwachung des Wasserstands in Behältern, die Detektion von Flüssigkeiten in Maschinen sowie die Überwachung unerwünschten Wassers in Smart Home Systemen. [1]
Anforderungen | |||||||||||||||||||||||||||
|
- Thema/Fragestellung: Feststellen ob es zum gegenwärtigen Zeitpunkt Niederschlag gibt mittels des Grove Water Sensor.
- Hypothese: Niederschlag lässt sich über den Grove Water Sensor feststellen.
- Einordnung in den Lehrplan: Die im Modul Angewandte Informatik vermittelten Lernziele, werden im Rahmen dieses Praxisbeispiels angewendet. Folgende Lernziele gilt es dabei zu überprüfen.
- mit der Versionskontrolle SVN nachhaltig Quelltext entsprechend der Programmierrichtlinien schreiben, sichern, kollaboriert bearbeiten und Konflikte lösen.
- in einer mathematisch orientierten Systax (z. B. MATLAB®) mit Vektoren und Matrizen rechnen, Programmteile in Funktionen auslagern, Zweige und Scheifen programmieren, Daten importieren und visualisieren.
- die Mikrocontrollerplattform Arduino modellbasiert mit Simulink programmieren, so dass Sensoren eingelesen und Aktoren angesteuert werden können. [2]
Projektbeschreibung
In diesem Abschnitt werden die verwendeten Komponenten vorgestellt.
# | Anzahl | Material |
---|---|---|
1 | 1 | PC mit MATLAB/Simulink R2023b |
2 | 1 | Arduino Uno R3 |
3 | 1 | Grove Water Sensor |
4 | 1 | Streckbrett |
5 | 1 | Buzzer |
6 | 5 | LCD Display |
7 | 2 | LED |
8 | 10 | Jumper Kabel, männlich/männlich, 20 cm |
Beschreibung der verwendeten Hard- und Software
Simulink R2023b
Simulink ist eine grafische Entwicklungsumgebung, die zur MATLAB-Software von MathWorks gehört. Sie dient vor allem der Modellierung, Simulation und Analyse dynamischer Systeme. In diesem Praxisbeispiel dient Simulink der Verarbeitung der Sensordaten. [3]
Arduino Uno R3
Der Arduino Uno R3 ist ein beliebtes Mikrocontroller-Board für Elektronikprojekte, basierend auf dem ATmega328P mit 32 KB Flash-Speicher. Es bietet 14 digitale Ein-/Ausgänge, von denen 6 PWM-fähig sind und 6 analoge Eingänge. Der Uno wird über USB oder eine externe Quelle betrieben und lässt sich einfach über die Arduino IDE in C/C++ oder über Matlab/Simulink programmieren.[4]
Grove Water Sensor
Der Grove Water Sensor wird eingesetzt, um Wasserpräsenz und -stand zu erfassen. Er findet in verschiedenen Bereichen Anwendung:
- Wasserleckerkennung: In Haushalten, Büros und industriellen Umgebungen hilft der Sensor, Wasserlecks aufzuspüren und dadurch Schäden durch undichte Stellen zu verhindern.
- Automatisierte Bewässerungssysteme: In der Landwirtschaft und Gartenpflege misst der Sensor den Bodenfeuchtigkeitsgehalt und steuert automatische Bewässerungssysteme.
- Füllstandsmessung: Der Sensor überwacht den Wasserstand in Behältern, Tanks oder Reservoirs und verhindert Überlauf oder Trockenlauf.
- Flüssigkeitserkennung in Maschinen: In industriellen Anwendungen überwacht der Sensor den Flüssigkeitsstand in Maschinen oder Systemen, um einen sicheren Betrieb zu gewährleisten.
- Smart Home Anwendungen: In Smart Home Systemen sendet der Sensor Alarme oder Benachrichtigungen, wenn unerwünschtes Wasser erkannt wird, beispielsweise im Keller oder in der Küche. [5]
Steckbrett
Ein Steckbrett ermöglicht die Verbindung elektrischer Bauelemente ohne Löten. Es ist in horizontale und vertikale Reihen unterteilt, in denen die Bauteile miteinander verbunden sind. Im Gegensatz zu Leiterplatten werden die Komponenten bei Steckbrett nicht gelötet, sondern in Federkontakte gesteckt. Dadurch kann die Schaltung einfach durch Umstecken angepasst werden. [6]
LCD Display
Das I2C 1602 LCD Modul hat ein zweizeiliges Display, das jeweils 16 Zeichen pro Zeile anzeigen kann, und ist mit einem I2C Modul HW-061 auf der Rückseite ausgestattet. Es benötigt eine Taktverbindung (SCL), eine Datenverbindung (SDA) sowie +5VDC und GND. Das Display kann über den I2C-Bus mit lediglich vier Anschlusskabeln betrieben werden. [7]
Piezo-Lautsprecher Ein Piezo-Lautsprecher ist ein elektronisches Bauteil, das Schallwellen erzeugt, indem es die piezoelektrischen Effekte nutzt. Dabei wird an ein piezoelektrisches Material, ein Spannung angelegt. Dadurch dehnt sich das Material aus und zieht sich zusammen. Diese Verformung erzeugt Schallwellen, welche als Geräusche oder Töne wahrgenommen werden.
Funktionsweise des Grove Water Sensor
Der Grove-Wassersensor gehört zu dem Grove-System und misst die Leitfähigkeit, um den Feuchtigkeitszustand des Sensors anzuzeigen, also ob der Sensor trocken, feucht oder vollständig in Wasser eingetaucht ist. Der Sensor hat mehrere parallele Leiterbahnen, die auf einem PCB (Printed Circuit Board) aufgebracht sind. Die Sensorkontakte verfügen über einen 1 MΩ Widerstand, der den Sensorwert hochhält. Fällt ein Wassertropfen auf Leiterbahnen, dann werden in dem betroffenen Bereich die Leiterbahnen durch das Wasser überbrückt und der Stromkreis zwischen dem Sensorsignal und GND geschlossen. Umso mehr Leiterbahnen vom Wasser bedeckt sind, umso mehr sinkt der Widerstand. Damit kann dann bestimmt werden ob der Sensor trocken, feucht oder vollständig in Wasser eingetaucht ist. Der Sensor kann dabei sowohl mit den digitalen I/O-Pins, wie auch den analogen Pins des Arduino genutzt werden. [9]
Technische Daten
Messbereich | 0 V - 5 V |
Versorgungsspannung | 5 V |
Versorgungsstrom | 20 mA |
Arbeitstemperatur | 10 °C - +30 °C |
Abmessungen | 20 mm x 20 mm x 10 mm |
Pinbelegung
Pin | Belegung | Signal |
---|---|---|
1 | Masse (GND) | 0 V |
2 | Versorgungsspannung VCC | 5 V |
3 | Not Connected (NC) | - |
4 | Analog Output (SIG) | 0 V - 5 V |
Versuchsaufbau und Durchführung
Versuchsaufbau
Der Versuchsaufbau wird durch einen Schaltplan (Abbildung. 2), Anschlussplan (Abbildung. 3) und Foto des Aufbaus (Abbildung. 4) dokumentiert.
Sensor
Der Sensor wird mit dem Arduino über drei Kabel verbunden. Der VCC Anschluss des Sensors wird mit den 5V Versorgungsspannung des Arduinos und GND des Sensors mit GND des Arduinos verbunden. Der Kontakt SIG wird an den analogen Port (A0) angeschlossen.
Buzzer
Der negative Ausgang des Buzzers wird an GND angeschlossen. Der positive Ausgang wird mit dem digitalen Pin (A8) das Arduino verbunden.
LED
Zur visuellen Anzeige ob Niederschlag gemessen wird, sind zwei LEDs angeschlossen. Die grüne LED leuchtet solange kein Niederschlag gemessen wird und ist über GND und den den digitalen Port A9 angeschlossen. Die rote LED leuchtet sobald es regnet und ist über GND und den digitalen Port A10 angeschlossen.
Versuchsdurchführung
Der Sensor soll den Niederschlag zuverlässig messen und feststellen ob es regnet. Dazu wurde der Sensor in eine Halterung geschraubt, die es ermöglicht von oben Wasser darauf tropfen zu lassen. Der Zweck der Halterung ergibt sich aus der Anforderung Niederschlag zu simulieren. Die Halterung setzt sich dabei aus zwei Teilen zusammen. So kann der Sensor flach hingelegt werden, um einzelne Wassertropfen zu messen, oder in den Ständer gesteckt werden, damit das Wasser nach unten abläuft, um Niederschlag simulieren zu können. Die Halterung, zu sehen in Abbildung ?? und Abbildung ??? wurde dabei in Autodesk Fusion360 selbst modellierte und mit einem 3D-Drucker ausgedruckt. Die STL. Datei kann hier heruntergeladen werden Datei:Grove Water Sensor Halterung.stl.
Simulink Modell
Das in Matlab/Simulink erstellte Modell zur Verarbeitung der vom Sensor gelieferten Daten ist in Abbildung ?? zusehen. Die Sensorwerte werden über den analogen Eingang A0 eingelesen und von dem Digitalwert in eine Spannung umgerechnet. Die Spannung wird dann über einen rekursiven gleitenden Mittelwertfilter gefiltert. Aus dem gefilterten Signal wird der Mittelwert der letzten 10 Werte berechnet. Der Mittelwert wird dann an den digitalen Output A8 gegeben. Über den digitalen Output A9 wird eine 1 gegeben wenn der gefilterte Wert größter gleich 2V liegt und eine 0 wenn der Wert kleiner als 2V ist. Über den digitalen Output A10 wird eine 0 gegeben wenn der gefilterte Wert größter gleich 2V liegt und eine 1 wenn der Wert kleiner als 2V ist.
Modelleinstellungen:
- Hardware Board: Arduino Uno
- Type: Fixed-step
- Solver: ode1 (Euler)
- Abtastrate: 0,001 s
Filterung der Messdaten
Abbildung ?? zeigt das ungefilterte Signal des Sensors in Gelb im trockenen Zustand für 5 Sekunden. Die Sensorkennlinie zeigt dabei deutlich Messausreißer auf, welche gefiltert werden müssen.
Für die Filterung wurde eine rekursiver gleitender Mittelwertfilter eingesetzt. Der Filter wurde in der Lehrveranstaltung "Signalverarbeitende Systeme" behandelt.
Bei der Auslegung eines rekursiven gleitenden Mittelwertfilters muss die Fensterbreite, also die Anzahl der in die Berechnung einbezogenen Datenpunkte, festgelegt werden. Eine größere Fensterbreite verbessert die Filterung des Rauschens, was zu einer glatteren Kurve führt. Allerdings nimmt mit einer größeren Fensterbreite auch die zeitliche Verzögerung des gefilterten Signals zu, weil mehr vergangene Datenpunkte berücksichtigt werden müssen.
Es ist somit wichtig, einen Kompromiss zwischen der Qualität der Filterung und der zeitlichen Verzögerung des gefilterten Signals im Vergleich zum Originalsignal zu finden.
Die Fensterbreite für diesen Sensor wurde auf 80 festgelegt. Somit erhält man ein geglättetes Signal, mit einer geringen zeitlichen Verzögerung. Da der Sensor nicht in harten Echtzeitsystemen zum Einsatz kommt, ist eine geringe zeitliche Verzögerung hinnehmbar. Das gefilterte Signal des Sensors in Blau im trockenen Zustand für 5 Sekunden ist in Abbildung ?? zu sehen.
Mabtlab Code des rekursiven gleitenden Mittelwertfilters:
function RGM = RekGleitenderMittelwert(x) persistent n aSchieberegister persistent bErsterDurchlauf if isempty (bErsterDurchlauf) n = 80; aSchieberegister = x * ones (n,1); bErsterDurchlauf = 1; end for m=1:n-1 aSchieberegister (m) = aSchieberegister(m+1); end aSchieberegister (n) = x; RGM = x; RGM = sum(aSchieberegister) / n; end
Mess- und Vertrauensbereich
Für die Bestimmung des Mess und Vertrauensbereich, wurde geschaut welche Werte der Sensor im trocknen Zustand hat und welche Werte vorliegen sobald Wassertropfen auf den Leiterbahnen liegen. Dafür wurden drei Zustände definiert.
- 1. "Zustand Trocken": Es liegt kein Wasser auf den Leiterbahnen des Sensors
- 2. "Zustand Nass": Es liegt ein Wassertropfen auf den Leiterbahnen des Sensors
- 3. "Zustand Niederschlag": Es tropfen kontinuierlich Wassertropfen auf den Leiterbahnen des Sensors
Zustand Trocken
Wenn der Sensor trocken ist, also kein Wasser auf den Leiterbahnen liegt, hat der Sensor ohne Filterung ein ziemlich hohes Rauschen. Mit der Filterung über einen rekursiven gleitenden Mittelwertfilter gibt der Sensor ziemlich konstant fast 5V aus. Somit kann zuverlässig bestimmt werden, dass kein Niederschlag stattfindet.
Abbildung ?? zeigt die Mess Die Messwerte befinden sich dabei im trocknen Zustand ziemlich genau bei 5V. Der Mittelwert liegt bei ???, die Abweichungen vom Mittelwert bei ??? und die Messunsicherheit liegt bei ???.
Zustand Nass
Um zu schauen ab wann der Sensor Niederschlag erkennt, wurde ein Wassertropfen auf die Leiterbahnen getropft und die Messdaten für 5 Sekunden aufgezeichnet. Über eine Matlab Funktion wurde dann aus den aufgezeichneten Messwerten der Mittelwert berechnet. Der ganz Vorgang wurde 10 mal wiederholt, wobei der Wassertropfen jedes Mal auf eine anderen Stelle auf der Leiterbahn getropft wurde. So soll ein möglichst realitätsnahes Ergebnis erzielt werden, da Regentropfen nicht immer an der gleichen Stelle aufschlagen. Folgende Werte wurden dabei aufgezeichnet:
- 01. Durchlauf: 0.85378
- 02. Durchlauf: 0.90942
- 03. Durchlauf: 0.81612
- 04. Durchlauf: 1.03845
- 05. Durchlauf: 1.45663
- 06. Durchlauf: 0.74349
- 07. Durchlauf: 0.95096
- 08. Durchlauf: 1.01804
- 09. Durchlauf: 1.99295
- 10. Durchlauf: 1.01497
Der Mittelwert aus den 10 Durchläufen beträgt somit
Wichtig zu erwähnen ist, dass die Wassertropfen nicht alle gleichgroß sind. Während bei größeren Tropfen Werte von 0.7V - 0.8V aufgezeichnet werden konnten, erzielten kleine Wassertropfen Werte zwischen 1.7V und 2.0V.
Zustand Niederschlag
Nachdem der Bereich bestimmt wurde in dem der Sensor Niederschlag misst, wurde eine Niederschlagssimulation über 5 Sekunden durch geführt. Dabei konnten folgende Werte aufgezeichnet werden:
Anhand der Sensorkennlinie sieht man, dass der Wert unterhalb den 2.0V liegt, die zuvor als Grenzwert festgelegt wurden. Die einzelnen Peaks treten auf wenn ein weitere Wassertropfen dazu kommt (Negative Steigung), ein Wassertropfen die Leiterbahnen entlang fließt (Abwechselnd leicht negative und positive Steigung) oder wenn ein Wassertropfen von Sensor fließt und der Kontakt zwischen den Leiterbahnen unterbrochen wird (Positive Steigung).
Kalibrierung des Sensors
Der Sensor arbeitet bereits ohne umfangreiche Kalibrierung sehr zuverlässig. Es wurde lediglich ein Bereich von 5V bis 2.0V festgelegt, in dem kein Niederschlag detektiert wird. Werte unterhalb von 2.0V zeigen das Vorhandensein von Niederschlag an. Mit dieser kleinen Kalibrierung können bereits zuverlässige Ergebnisse hinsichtlich der Niederschlag Erkennung erzielt werden.
Versuchsdurchführung einer dynamischen Regen-Simulation
Nachdem der Mess- und Vertrauensbereich bestimmt war, konnte ein umfassender Versuch durchgeführt werden. Der Versuch erstreckte sich über 20 Sekunden. Zu Beginn wurde kein Niederschlag simuliert. Ab der 5. Sekunde wurde Regen simuliert, und ab der 15. Sekunde wurde erneut kein Niederschlag mehr simuliert. Das Ergebnis des Versuchs ist in dem Ergebnisvideo und in der folgenden Abbildung zusehen:
Versuchsbeobachtung
Der Versuch zu der dynamischen Regen-Simulation zeigt, dass der Sensor den Niederschlag zuverlässig misst. Gleichzeitig sorgt der Filter dafür Peaks in den Messwerten abzufangen und zu glätten. Das sich der Messwert mit jedem neuen Tropfen oder jedem Tropfen der von Sensor fließt teilweise stark verändert, geht der Buzzer immer wieder an und aus. Die lässt sich nicht vermeiden, aufgrund der Unbeständigkeit von Regen. Die angeschlossenen LEDs hingegen, zeigen zuverlässig an wenn keine Niederschlag (Grüne LED leuchtet) und wenn Niederschlag (Rote LED leuchtet) vorliegt.
Auswertung
Regenerkennung
Zusammenfassung und Ausblick
Zusammenfassung
Die Sensordaten zeigen, dass der Grove Water Sensor zuverlässig zwischen trockenem Zustand und Niederschlag unterscheiden kann. Werte unterhalb von 1.8V bedeuten es liegt einen Niederschlag vor, während Werte zwischen 1.8V und 5V Aussagen das kein Niederschlag stattfindet. Diese Schwellenwerte wurden auf Basis der gemessenen Daten und der Kalibrierung des Sensors festgelegt.
Aus den Werten des Trocken Zustands und den Werten des Nassen Zustands lässt sich somit festhalten, dass gemessene Werte unter halb 1.8V darauf schließen lassen, dass es Niederschlag gibt. Im Bereich von 1.8V bis 5V liegt kein Niederschlag vor. Diese Werte gelten nur für den Fall das ein Wassertropfen auf den Leiterbahnen liegt. Liegen Mehrere Wassertropfen darauf, fallen die Messwerte niedriger aus.
Diskussion der Ergebnisse
Die Sensordaten bestätigen, dass der Grove Water Sensor effektiv zwischen trockenem Zustand und Niederschlag unterscheidet. Die Filterung der Messdaten hat die Genauigkeit verbessert, indem sie Rauschen und Peaks minimiert hat. Es wurde festgestellt, dass kleine Wassertropfen höhere Werte liefern als größere Tropfen, was bei der Kalibrierung berücksichtigt werden muss. Die LEDs haben zuverlässig auf den Niederschlag reagiert. Der Niederschlag konnte somit erfolgreich detektiert werden.
Ausblick
Für zukünftige Arbeiten könnten weitere Verbesserungen der Sensorgenauigkeit erzielt werden, etwa durch eine genauere Kalibrierung oder den Einsatz zusätzlicher Sensorkomponenten. Zusätzlich könnte die Anwendung des Sensors auf verschiedene Flüssigkeiten ausgeweitet werden, um dessen Vielseitigkeit zu erhöhen. Der Grove Water Sensor ist für die Erkennung von Wasser optimiert. Im Rahmen dieser Ausarbeitung wurde nur mit Wasser gemessen. Interessant wäre es zu sehen wie der Sensor auf andere Flüssigkeiten wie Öl oder Chemikalien reagiert.
Selbstreflexion/Lessons learned
Ergebnisvideo
Video der Versuchsdurchführung
Anleitung: Videos im Wiki einbinden
Lernzielkrontrolle
Beantworten Sie in Ihrem Artikel die Lernzielkontrollfragen.
Lernzielkontrollfragen |
|
Literatur
Zitieren Sie nach DIN ISO 690:2013-10.
Anhang
- Datenblätter
- Simulink-Modell
- Originaldateien (PAP, Schaltplan,... )
→ zurück zum Hauptartikel: BSE Angewandte Informatik SoSe24 | Hausarbeit SoSe24
- ↑ https://cdn-reichelt.de/documents/datenblatt/A300/101020018_01.pdf, abgerufen am 14.07.2024
- ↑ https://wiki.hshl.de/wiki/index.php/BSE_Angewandte_Informatik_-_SoSe24, abgerufen am 14.07.2024
- ↑ https://de.mathworks.com/products/simulink.html, abgerufen am 14.07.2024
- ↑ https://docs.arduino.cc/hardware/uno-rev3/, abgerufen am 14.07.2024
- ↑ https://cdn-reichelt.de/documents/datenblatt/A300/101020018_01.pdf, abgerufen am 14.07.2024
- ↑ https://wiki.hshl.de/wiki/index.php/Steckbrett, abgerufen am 14.07.2024
- ↑ https://wiki.hshl.de/wiki/index.php/LCD_Modul_16x02_I2C, abgerufen am 14.07.2024
- ↑ https://wiki.seeedstudio.com/Grove-Water_Sensor/
- ↑ https://www.mouser.com/datasheet/2/744/Seeed_101020018-1217524.pdf, abgerufen am 21.07.2024
- ↑ https://cdn-reichelt.de/documents/datenblatt/A300/101020018_01.pdf, abgerufen am 14.07.2024
- ↑ https://cdn-reichelt.de/documents/datenblatt/A300/101020018_01.pdf, abgerufen am 14.07.2024