GPS Sensor mit Matlab/Simulink

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen

Noch im Bearbeitung!!!!!!!!!!!!!!!!

Im Rahmen des Masterstudienganges "Business and Systems Engineering" an der Hochschule Hamm- Lippstadt geht es darum im Modul "Signalverarbeitende Systeme " ein selbsgewählte Sensor im Matlab/Simulink auszulesen und die Signalverabeitungskette beschrieben, untersuchen und verstanden. In Dieser Artikel wird die Signalverarbeitungskette der DGPS Sensor[1] von der Firma Dexter Industries beschrieben und am Anschluss wird die Sensordaten im Matlab/Simulink ausgelesen.

Einleitung

DGPS

DPGS SEnsor

Sensor ist die Erweiterung von GPS Sensor[2] , diese ist ein globales Navigationssatellitensystem zur Positionsbestimmung.

DGPS Sensor (Differentielle Global Posittionierungssysteme) ist ein Methode um GPS Fehler zu verbessern. Da GPS-Messungen, bestehend aus Verzerrungen und Geräuschen, die beeinflussen die Positioniergenauigkeit. In der Praxis ergeben die GPS Ungenauigkeiten, weil die Signalgeschwindigkeit in der Tropo- und Ionosphäre zeitlich und räumlich leicht variiert. Zudem sind die Bahnen und Uhrenfehler der Satelliten dem Empfänger nicht genau bekannt. DGPS ist eine Technik, die die Lösungsgenauigkeit verbessert und dieser Fehler entfernen. Es wurde entwickelt, um die Bedürfnisse der Positionierung und Abstandsmessung Anwendungen, die höhere Genauigkeiten erforderten als eigenständiger Standard Positionierung Service (SPS). DGPS kann als eine Kalibrierungsmethode betrachtet werden Kalibrierstandard wird an der Basisstation festgelegt.

Signaverarbeitungskette

Wie Funktioniert Der DGPS Sensor

DGPS Sensor Beschreibung

wenn der Sensor[3] mit einem der vier Sensoranschlüsse mit dem NXT verbunden ist, werden Zwei Arten von Daten zwischen dem NXT hin und her gesendet:

Positionsdaten: Der GPS-Sensor sendet Daten über Zeit (UTC), Breite, Länge, Geschwindigkeit (in cm / s) und Richtung (in Grad).

Navigationsdaten: Der NXT kann so programmiert werden, dass er die Breite und Länge eines gewünschten Ziels oder Wegpunkts an den GPS-Sensor sendet. Der GPS-Sensor berechnet die Entfernung und den Wegwinkel zum Ziel. Der Sensor sendet die Informationen dann an den NXT zurück. Für genauere Daten zur Fahrtrichtung kann das GPS einen Winkel seit dem letzten Anruf berechnen.


Welche Rohsignale liefert der DGPS Sensor?

Das GPS-Satellit sendet permanent zwei Signale aus, das Signal L1 auf der Frequenz f1=1575,42 MHz (Wellenlänge λ1=0,19 m) und das Signal L2 auf der Frequenz f2= 1227,60 MHz (Wellenlänge λ2=0,24 m). Die Signale werden moduliert um die Navigationsnarichten, Trägerwelle und Code zu übertragen, und damit dem Empfänger der Signale erkennen kann. Die Modulation und Kodierung von diese findet man hier[4]. Nach der Modulation können dann die der Pseudo-Entfernung der Empfänger bestimmen werden. Diese wird durch eine Codephasen- Messung durchgeführt. Das Prinzip des Messverfahrens ist die Bestimmung der Laufzeit des Signals über Kreuzkorrelationen Diese wird in der nächsten Überschrift erläutern. Die Pseudo-Entfernung ergibt dann:

• ∆t: unbekannter Empfängeruhrfehler

• ∆Ti: gemessene Laufzeiten der Satellitensignale

• c Konstant

Signalvorverarbeitung

mmmmm


Analog - Digital - Umsetzer

Analoge Digital Umsetzer in Abkürzung ADU[5] ist ein elektronisches Gerät zur Umsetzung von Analogen Eingangssignal in Digitalen Datenstrom. Auf dem Mikrochip der DGPS sitzt der ATMEG328P AU[6] Umsetzer, dieser ermöglicht die Umwandlung eines analogen Eingangssignal von der IC Schnittstelle des DGPS in eine 10-Bit Binärdarstellung.

Diese ADU's arbeiten mit dem Prinzip der sukzessiven Approximation[7]

Funktionsweise ADU Sukzessiven Approximation

. Dabei wird das zu messende Signal, hier die Spannung des DGPS, schrittweise durch Vergleich digitalisiert. Vergleicht wird mit einer Referenzspannung, welche genauso viele Bit hat wie der verbaute ADU. Die analoge Eingangsspannung wird in n Schritten digitalisiert, wobei die Genauigkeit bei jedem Schritt um 1 Bit steigt. Bei jedem Schritt wird Ein Vergleich durchgeführt, um zu bestimmen, ob Eingangsspannung kleiner als oder größer als Referenzspannung ist. Die Referenzspannung wird durch der ADU erzeugt. Je nachdem, ob die analoge Eingangsspannung größer oder kleiner als die Spannung des ADU ist, wird die Referenzspannung im nächsten Schritt um die halbe Schrittweite des letzten Schritts nach oben oder nach unten verändert. Dadurch nähert sich die Spannung des DA-Wandlers immer mehr der Eingangsspannung an. Zum Schluss, wenn das letzte Bit des DA-Wandlers gesetzt ist, entspricht der Wert des ADU der Eingangsspannung.

Bussystem

Um die Kommunikation zwischen den Sensor und Mikrokontroller (NXT-Lego Mindstorms) zu ermöglichen wird ein Bussystem beziehungsweise I²C[8] eingesetzt. Das Bussystem I²C wurde im Jahr 1982 von Phillips als Kommunikationsbus entwickelt. Das I 2C-Bus-System dient zum Aufbau der Kommunikation zwischen Schaltungsteilen In Dieses Falls dient er um die Kommunikation zwischen NXT-Lego Mindstorms und der DGPS Sensor. das Bussystem funktioniert nach dem Master Slave Prinzip. D.h Die Daten werden über die beiden Leitungen zwischen dem Master und einem der Slaves ausgetauscht. Da Daten vom Master sowohl gesendet als auch empfangen werden, arbeiten die Leitungen bidirektional. Die entsprechenden Anschlüsse der Bausteine sind also sowohl Eingänge als auch Ausgänge. Diese verbinden einen Steuercomputer (PC oder Mikroprozessor) den so genannten Master (Systeme mit mehreren Mastern werden hier nicht betrachtet) mit einem oder mehreren Peripheriebausteinen, den Slaves. Hier ist der DGPS sensor der Slave und der NXT-Lego Mindstorms der Master.

Der NXT kommuniziert über I2C

I2C-Information

mit dem GPS-Sensor von Dexter Industries. Der NXT sendet sieben Datenbytes an das GPS. Die ersten drei Bytes teilen dem GPS mit, welche Art von Daten zurück an den NXT gesendet werden. Die letzten vier Bytes sind für den Längen- und Breitengrad eines Ziels reserviert. Die I2C-Kommunikation

I2C-Register-Informaiton

ist in der folgenden Abbildung dargestellt. Eine vollständige Liste der I2C-Aufrufe finden Sie unten.

Digitale Signalverarbeitung

mmmmm


Darstellung der Ergebnisse

mmmmm


YouTube Video

Zusammenfassung

Literatur