ARD VIB 01 - Piezo Vibrationssensor

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Abb. 1: Piezo Vibrationssensor ARD VIB 01
Autor: Niklas Reeker
Studiengang: Business and Systems Engineering
Modul: BSE-M-2-1.03, Hausarbeit in Angewandte Informatik
Betreuender Professor: Prof. Dr.-Ing. Schneider
Semester: Sommersemester 2024
Abgabetermin: 28.07.2024

Einführung

Vibrationen, die auf den Sensor einwirken, erzeugen durch den piezoelektrischen Effekt ein Spannungssignal abhängig von der Stärke der Vibration.


Aufgabenstellung

Messen Sie mit dem Piezo Vibrationssensor ARD VIB 01 die Stärke der auf den Sensor einwirkenden Vibrationen.

  • Thema/Fragestellung:
  • Hypothese:
  • Einordnung in den Lehrplan:

Projektbeschreibung

Tabelle 2: Materialliste
# Anzahl Material
1 1 PC mit MATLAB/Simulink R2022b
2 1 Sensor Sharp GP2-0430K
3 1 Arduino Uno R3
4 1 Streckbrett
5 5 Jumper Kabel, männlich/männlich, 20 cm

Beschreibung Funktionsweise der verwendeten Hard- und Software

  • Arduino Uno R3
  • Sensor Sharp GP2-0430K
  • Simulink R2022b


Technische Daten

Messbereich 0 ° .. 180 °
PWM-Modulation analog
PWM-Pulszykluszeit 20 ms
PWM-Pulsweite 500-2400 ms
Versorgungsspannung 4.0 V .. 7.2 V
Versorgungsstrom 20 mA
Geschwingigkeit 0,12 s/60 ° (@4,8 V, lastfrei)
Drehmoment 1,5 kg/cm (@4,8 V)
Gewicht 9 g
Getriebe Kunststtoff
Arbeitstemperatur 0 °C .. +55 °C
Abmessungen 22,2 mm x 11,8 mm x 31 mm

Pinbelegung

Pin Belegung Signal
1 Versorgungsspannung VCC 5 V
2 Triggereingang TTL-Pegel
3 Echo, Ausgang Messergebnis TTL-Pegel
4 Masse (GND) 0 V

Versuchsaufbau und Durchführung

Versuchsaufbau

Abb. 2: Schaltplan
Abb. 3: Anschlussplan
Abb. 4: Foto des Versuchsaufbaus

Der Versuchsaufbau wird durch einen Schaltplan (Abb. 2), Anschlussplan (Abb. 3) und Foto des Aufbaus (Abb. 4) dokumentiert.

Versuchsdurchführung

Abb. 5: Simulink-Modell

Das Modell zur Datenverarbeitung wurde gemäß Abb. 5 in Simulink aufgebaut. Die Messdaten wurden aufgezeichnet. Ein Video der Versuchsdurchführung findet sich hier.

Modelleinstellungen: Arduino Uno, Solver: Fixed-step, discrete, Abtastrate: 0,001 s

Versuchsbeobachtung

Abb. 6: Darstellung des Rohsignals des IR-Entfernungssensors (rote Kurve)
Abb. 7: Darstellung von dynamischen Messwerten des IR-Entfernungssensors

Das Signal des Sensors weist alle 40 ms systematische Ausreisser auf (vgl. Abb. 6, rote Kurve).

Auswertung

Die Messhypothese wurde verworfen. Der Sensor weist systematische Messwertausreisser auf.

Die Ausreisser lassen sich mit einem Signalfilter eliminieren. Hierzu eignet sich ein Rangordnungsfilter (z. B. Median-Filter). Das Filter wird hierzu auf eine Fensterbreite von 30 Werten eingestellt. Das zufriedenstellende Filterergebnis für statische Werte zeigt Abb. 6 als blaue Kurve. Es konnte mit dynamische Werten verifiziert werden (vgl. Abb. 7). Das Datenblatt ([2, S. 6]) belegt die Messungen und bezeichnet die Messausreisser als "instabile Ausgabe" für maximal 5 ms alle 40 ms. Mit 50 Werten erhöht sich die Filterwirkung, es entsteht jedoch ein Delay von 10 ms. Mit 10 Werten ist die Filterwirkung zu gering.

Zusammenfassung und Ausblick

  • Zusammenfassung der Kapitel 1-4
  • Diskussion der Ergebnisse
  • Ausblick
  • Selbstreflexion/Lessons learned

Ergebnisvideo

Binden Sie hier Ihr Ergebnisvideo ein.

Anleitung: Videos im Wiki einbinden

Lernzielkrontrolle

Beantworten Sie in Ihrem Artikel die Lernzielkontrollfragen.

Literatur

Zitieren Sie nach DIN ISO 690:2013-10.


Anhang

Datenblätter

Simulink-Modell

Originaldateien

  • PAP
  • Schaltplan,...

→ zurück zum Hauptartikel: BSE Angewandte Informatik SoSe24 | Hausarbeit SoSe24