UV-Sensor UVM30A
Autor: | Oliver Scholze |
Studiengang: | Business and Systems Engineering |
Modul: | BSE-M-2-1.03, Hausarbeit in Angewandte Informatik gehalten von Prof. Dr.-Ing. Schneider |
Semester: | Sommersemester 2024 |
Abgabetermin: | 28.07.2024 |
Einführung
Der Sensor im UVM30A ist ein photodetektiver Sensor, der UV-Licht im Bereich von 200 nm bis 370 nm erfasst. Dieser photodetektiver Sensor besteht aus einem Halbleitermaterial, das bei Bestrahlung mit UV-Licht Elektronen freisetzt. Diese freigesetzten Elektronen erzeugen einen elektrischen Strom, der proportional zur Intensität des einfallenden UV-Lichts ist, diese wird auch als photoelektrischer Effekt bezeichnet. Dieser Strom wird dann in eine analoge Spannung umgewandelt, die vom Sensor ausgegeben wird. Die analoge Ausgangsspannung wird mithilfe des Diagramms, aus dem Datenblatt, in einen UV-Index umgewandelt.
Aufgabenstellung
Messen Sie Intensität eines gegebenen ultravioletten Lichts. Zeigen Sie auf dem Display an, welchem UV Index die Intensität entspricht.
Anforderungen | |||||||||||||||||||||||||||
|
- Thema/Fragestellung: Messung der UV-Intensität erfolgt mit dem Sensor UVM30A
- Hypothese: Die Wellenlängen lassen sich im Bereich von 200 nm-370 nm fehlerfrei messen.
- Einordnung in den Lehrplan
Projektbeschreibung
# | Anzahl | Material |
---|---|---|
1 | 1 | PC mit MATLAB/Simulink R2023b |
2 | 1 | UV-Sensor - UVM30A |
3 | 1 | Arduino Uno R3 |
4 | 1 | Streckbrett |
5 | 5 | Jumper Kabel, männlich/männlich, 20 cm |
5 | 1 | LCD-Display mit I2C |
Beschreibung Funktionsweise der verwendeten Hard- und Software
- Arduino Uno R3: Der Arduino Uno R3 ist das Herzstück des Systems und dient als Mikrocontroller.
- UVM30A: Der Sensor erzeugt ein elektrisches Signal, dessen Spannung von der Intensität der UV-Strahlung abhängt, die auf den Sensor trifft.
- Simulink R2023b: Erstellung des Programms zur Ansteuerung und Auswertung der angeschlossenen Hardware (UVM30A und LCD Display).
- LCD-Display mit I2C: Das LCD-Display wird verwendet, um die gemessenen UV-Intensitätswerte anzuzeigen.
- Steckbrett: Ein Steckbrett dient zum schnellen und flexiblen Aufbau und Testen von elektronischen Schaltungen ohne Löten.
- Jumperkabel: Jumperkabel werden verwendet, um Verbindungen zwischen verschiedenen Komponenten auf einem Steckbrett oder zwischen einem Steckbrett und einem Arduino herzustellen.
Technische Daten
Messbereich | 200-370 nm |
Versorgungsspannung | 3 V .. 5 V |
Versorgungsstrom | 0.06 mA, maximal 0.1 mA |
Genauigkeit | +-1 UV Index |
Gewicht | 13 g |
Getriebe | Kunststtoff |
Arbeitstemperatur | -20 °C .. +85 °C |
Abmessungen | 34 mm x 13 mm x 7 mm |
Pinbelegung
Pin | Belegung | Signal |
---|---|---|
1 | Versorgungsspannung VCC | 5 V |
2 | Analoger Ausgang | 0 V .. 5 V |
3 | Masse (GND) | 0 V |
Versuchsaufbau und Durchführung
Versuchsaufbau
Der Versuchsaufbau wird durch einen Schaltplan (Abb. 2), Anschlussplan (Abb. 3) und Foto des Aufbaus (Abb. 4) dokumentiert.
Versuchsdurchführung
Das Modell zur Datenverarbeitung wurde gemäß Abb. 5 in Simulink aufgebaut. Die Messdaten wurden aufgezeichnet. Ein Video der Versuchsdurchführung findet sich hier.
Modelleinstellungen: Arduino Uno, Solver: Fixed-step, discrete, Abtastrate: 0,001 s
Versuchsbeobachtung
Das Signal des Sensors weist alle 40 ms systematische Ausreisser auf (vgl. Abb. 6, rote Kurve).
Auswertung
Die Messhypothese wurde verworfen. Der Sensor weist systematische Messwertausreisser auf.
Die Ausreisser lassen sich mit einem Signalfilter eliminieren. Hierzu eignet sich ein Rangordnungsfilter (z. B. Median-Filter). Das Filter wird hierzu auf eine Fensterbreite von 30 Werten eingestellt. Das zufriedenstellende Filterergebnis für statische Werte zeigt Abb. 6 als blaue Kurve. Es konnte mit dynamische Werten verifiziert werden (vgl. Abb. 7). Das Datenblatt ([2, S. 6]) belegt die Messungen und bezeichnet die Messausreisser als "instabile Ausgabe" für maximal 5 ms alle 40 ms. Mit 50 Werten erhöht sich die Filterwirkung, es entsteht jedoch ein Delay von 10 ms. Mit 10 Werten ist die Filterwirkung zu gering.
Zusammenfassung und Ausblick
- Zusammenfassung der Kapitel 1-4
- Diskussion der Ergebnisse
- Ausblick
- Selbstreflexion/Lessons learned
Ergebnisvideo
Binden Sie hier Ihr Ergebnisvideo ein.
Anleitung: Videos im Wiki einbinden
Lernzielkrontrolle
Beantworten Sie in Ihrem Artikel die Lernzielkontrollfragen.
Lernzielkontrollfragen |
|
Literatur
Zitieren Sie nach DIN ISO 690:2013-10. https://www.wiltronics.com.au/wp-content/uploads/datasheets/ARD2-2062.pdf
Anhang
- Datenblätter
- Simulink-Modell
- Originaldateien (PAP, Schaltplan,... )
→ zurück zum Hauptartikel: BSE Angewandte Informatik SoSe24 | Hausarbeit SoSe24