Ampel-Demonstrator: Unterschied zwischen den Versionen
Zeile 62: | Zeile 62: | ||
<u>[https://svn.hshl.de/svn/MTR_GPE_Praktikum/trunk/Fachthemen/Ampel_Kreuzungsdemonstrator/07_Integrationstest/ '''Integrationstest''']:</u> | <u>[https://svn.hshl.de/svn/MTR_GPE_Praktikum/trunk/Fachthemen/Ampel_Kreuzungsdemonstrator/07_Integrationstest/ '''Integrationstest''']:</u> | ||
*Test, ob die Komponenten | *Test, ob die Komponenten wie geplant miteinander kommunizieren | ||
<u>[https://svn.hshl.de/svn/MTR_GPE_Praktikum/trunk/Fachthemen/Ampel_Kreuzungsdemonstrator/09_Systemtest/ '''Systemtest''']:</u> | <u>[https://svn.hshl.de/svn/MTR_GPE_Praktikum/trunk/Fachthemen/Ampel_Kreuzungsdemonstrator/09_Systemtest/ '''Systemtest''']:</u> |
Version vom 30. Dezember 2020, 15:13 Uhr
Autoren: Alexander Hammelbeck & Alexander Thumann
Betreuer Prof. Dr. Mirek Göbel
Wintersemester 20/21
Einleitung
Im Rahmen des Studiengangs Mechatronik der Hochschule Hamm-Lippstadt, wird im 7.Semester das Praktikum Produktionstechnik durchgeführt. Das Praktikum ist Teil des Schwerpunktes Global Production Engineering.
In diesem Praktikum geht es um die Realisierung eines mechatronischen Systems mit Hilfe einer speicherprogrammierbaren Steuerung (SPS) von Siemens. Diese SPS soll einen eigens entwickelten Ampel-Demonstrator steuern.
Aufgabenstellung
Die Aufgabe des Praktikums war es, ein Ampelmodell zu konstruieren und dies mit einer Siemens SPS (ET200SP) zu steuern. Die Ampelanlage soll den Verkehrsfluss für Autos, Fußgänger und Fahrradfahrer regeln. Die Grünphase der Fußgänger soll durch ein Tastsignal angefordert werden. Des Weiteren sollen Fahrzeuge durch entsprechende Sensorik erkannt werden (Näherungssensoren). Bei der Bearbeitung dieses Projektes sind folgende Punkte zu beachten, bearbeiten und zu dokumentieren:
- Ampeldemonstrator muss im Vorfeld genau geplant werden
- Kreuzungsaufbau muss von Grund auf neu erstellt werden
- Gehäuse für Ampelanlagen konstruieren
- Verdrahtung aller elektronischen Komponenten
- Siemens SPS muss aufgebaut, verdrahtet und implementiert werden, sodass diese die Kreuzung steuert
- Dokumentation des gesamten Projektes in SVN und als Wiki-Artikel
Vorgehensweise nach V-Modell
Damit eine strukturierte Vorgehensweise zur Bearbeitung des Projektes sichergestellt werden kann, wird dieses nach den Vorgaben des V-Modells durchgeführt.
Das V-Modell ist auf der rechten Seite zu erkennen.
Die jeweiligen Punkte sind als Link zum SVN hinterlegt.
In den Anforderungsdefinitionen wird festgelegt, welche grundlegende Dinge im Voraus an das Projekt gestellt werden und auch einzuhalten sind.
Die Anforderungsdefinitionen sind in fünf Hauptpunkte unterteilt.
- Geometrie & Gewicht
- Aufbau
- Schnittstellen
- Software & Werkzeuge
- Dokumentation
- Lösungsneutraler Entwurf des Ampel-Demonstrators
- Definition der Schnittstellen und die Zerlegung des Systems in überschaubarere Teilsysteme
- Funktion der einzelnen Komponenten sowie deren Schnittstellen untereinander
- Grafcet-Entwicklung
- CAD-Modell der Ampel erstellen und additiv fertigen
- Programmierung der gesamten Ampelanlage
- E-Pläne erstellen
- Inbetriebnahme der Komponenten
- Fehlersuche und Behebung
- Programmverbesserung
- Test, ob die Komponenten wie geplant miteinander kommunizieren
- Test, ob das implementierte System mit den spezifischen Anforderungen übereinstimmt
- Test, ob das Projekt wie gewünscht umgesetzt worden ist
CAD-Modell der Ampelanlage
Die acht Ampeln bestehen jeweils aus zwei Bauteilen, zum einen aus dem Standfuß und zum anderen aus der Säule. Der Standfuß dient einerseits zur Befestigung der Ampel auf der (50 x 50) cm großen Grundplatte und zur Halterung des Tasters. Die Säule dient als Aufnahme für die LED-Module. Beide Bauteile können formschlüssig durch leichten Druck gefügt werden, sodass eine Miniaturampel entsteht. Alle Teile wurden zuvor additiv mit Hilfe eines 3D-Druckers gefertigt. Dafür wurden die Bauteile (Standfuß und Säule) mit SOLIDWORKS konstruiert und in einem entsprechendem Dateiformat (STL) gespeichert, welches vom 3D-Drucker weiterverwendet werden kann.
Im Folgenden sind die Darstellungen der CAD-Modelle zu erkennen.
Ampeldemonstrator - Planung & Aufbau
Die Aufgaben, welche zur Planung und zum Aufbau des Ampel-Demonstrators gehören, sind in den nächsten Unterpunkten aufgelistet:
Planung
- Komponenten auswählen und auflisten für HSHL-interne Bestellung
- Maßstabsgetreue Skizze der Kreuzung anfertigen (mit allen Fahrwegen und Ampelpositionen)
- Größe der Holzplatte definieren (dient als Grundplatte für Kreuzungsaufbau)
- Bemaßungen der Fahr- und Fußgängerwege sowie der Grünflächen
Aufbau
- SPS Hardware aufbauen und verkabeln
- Digitale und analoge Ein-und Ausgänge mit 24 V / DC Spannung versorgen
- 230 V / 50 Hz AC Zuleitung für SPS anschließen
- Layout der Kreuzung erstellen
- Grundplatte zuschneiden
- Folierung der Wege auf der Grundplatte
- Grünflächen kleben
- Kantenschutz anbringen
- Kabelkanal montieren
- Reihenklemmen montieren
- Standfüße montieren
- Zusätzliche Holzplatte für 50 poligen Sub-D Anschlussblock anbringen
- 50 poligen Sub-D Anschlussblock montieren
- Ampelkreuzung aufbauen und verkabeln
- Schaltdrähte verlegen und verlöten
- Widerstände vor LED-Module löten
- 50 poligen Sub-D Stecker verlöten
- Additiv gefertigten Ampelgehäuse montieren und Taster anschließen
Schaltpläne
SPS-Programmierung mit TIA-Portal
Vorbereitungen für die Programmierungen
Bevor die Funktionen des Ampel-Demonstrators in der Software (TIA-Portal) von Siemens programmiert werden können, müssen alle Komponenten (Ein- und Ausgänge) ein bestimmten Namen und eine Adresse erhalten. Dafür wurden alle Komponenten des Systems aufgelistet (vgl. Abbildung Auflistung der Komponenten) und anschließend zusammengefasst, da viele Komponenten (bspw. die vier Autoampeln auf der Bundesstraße) gleich schalten. Die zusammengefasste Liste ist in der Abbildung Kreuzung Bezeichnungen dargestellt.
Des Weiteren muss der Ablauf des Programms im Vorfeld definiert werden. Dafür wurde ein Diagramm erstellt, welches die Schaltreihenfolge der Ampeln über der Zeit darstellt. Das Ampelsystem für die Autos hat sechs unterschiedliche Schaltzustände. Diese werden im STEP 7 Programm als Merker M1 bis M6 gespeichert. Das Diagramm ist in folgender Abbildung (Ampelphasen) dargestellt. Die sechs unterschiedlichen Schaltzustände sind blau gekennzeichnet.
Mit Hilfe des Diagramms Ampelphasen wurde ein Ablaufplan erstellt, welcher als Programmiergrundlage dient. Der Ablaufplan ist im folgendem abgebildet.
PLC-Variablentabelle
Die Programmierung des Ampel-Demonstrators wurde mit einer Siemens SPS ET200SP und der dazugehörigen TIA-Portal Software realisiert. Zu beginn der Programmierung mussten alle Ein- bzw. Ausgänge und Merker implementiert werden. Die Implementierung wurde in der PLC Variablentabelle durchgeführt. Hier wurde jedem Ein-/Ausgang und Merker ein Name zugewiesen sowie eine Adresse. Die Variablentabelle ist in folgender Abbildung dargestellt.
Übersicht Bausteine
Das Programm für den Ampeldemonstrator besteht aus mehreren Bausteinen, dem Organisationsbaustein (OB1), Startupbaustein (OB100) und vier Funktionsbausteinen (FC3-6) (vgl. Abbildung Übersicht Bausteine).
Organisationsbaustein OB1
Der Organisationsbaustein (OB1) ruft die einzelnen Funktionen (FC3-6) nacheinander im Intervall von 150 Millisekunden auf. Die Funktionen wurden für eine bessere Programmübersicht aufgeteilt und haben demnach alle eine unterschiedliche Aufgabe. Die Programmierung des Organisationsbausteins ist dem folgendem Bild zu entnehmen.
Startup-Baustein OB100
Der Startup-Baustein (OB100) ist ein besonderer Organisationsbaustein. Er wird nur einmalig zum Programmstart aufgerufen und aktiviert sich selber. Dieser wird dafür genutzt, um in die Schrittkette der Ampelsteuerung zu gelangen und den Zähler bei Programmstart zu nullen. Sobald die Schrittkette aktiv ist, wird der Startup-Baustein deaktiviert. Die Programmierung des OB100 ist dem folgendem Bild zu entnehmen.
Funktionsbaustein FC3
Die vier Funktionsbausteine steuern den Ablauf des Ampel-Demonstrators. Der erste Funktionsbaustein FC3 enthält einen Zähler, welcher zyklisch von 0 bis 110 zählt. Der Wert des Zählers ist eine Bedingung für die jeweiligen Schritte der Schrittkette. Der Ablauf der Schrittkette und demnach auch der Ablauf der Schaltreihenfolge der Auto- bzw. Fußgängerampeln wird vom Zähler gesteuert. Weitere Informationen zum Zähler, sind dem folgendem Programmausschnitt zu entnehmen.
Funktionsbaustein FC4
Der zweite Funktionsbaustein FC4 enthalt die Merkerbausteine M1 bis M6, welche jeweils für einen Schritt der Schrittkette stehen. Die Merker werden zu bestimmten Zeitpunkten durch den Zähler aus FC3 gesetzt und auch wieder zurückgesetzt. Sie bilden die Schrittkette für die Steuerung der Autoampeln und Fußgängerampeln. Ist ein Merker aktiv, setzt er unter bestimmten Bedingungen in FC5 oder FC6 einen Ausgang auf eins oder null. Nähere Informationen zu den einzelnen Merkern und deren Setztbedingungen, sind den folgenden Abbildungen M1 bis M6 zu entnehmen.
Funktionsbaustein FC5
Der dritte Funktionsbaustein FC5 enthält die Ausgabebausteine für die Autoampeln. Die Setz- und Rücksetzbedingungen sind den Programmausschnitten zu entnehmen.
Funktionsbaustein FC6
Der vierte Funktionsbaustein FC6 enthält die Ausgabebausteine für die Fußgängerampeln. Die Setz- und Rücksetzbedingungen sind den Programmausschnitten zu entnehmen.
Ausblick
Der Ampel-Demonstrator konnte im Wintersemester 20/21 weitestgehend fertiggestellt werden. Leider kam es bei der Bestellung der Näherungssensoren zu Verzögerungen. Somit konnten diese nicht eingebaut und implementiert werden. Des Weiteren ist uns im späteren Verlauf des Semesters aufgefallen, dass gelbe Blinklichter, welche Autofahrer darauf hinweisen, dass Fußgänger die Straße überqueren, fehlen. Dies könnte eine Aufgabe für die nachfolgenden Studenten sein. Darüber hinaus könnte noch ein Nachtmodus mit Hilfe der Näherungssensoren programmiert werden und eine unterbrechungsfreie Stromversorgung mit Schaltrelais, die bei Ausfall der SPS alle gelben Lampen des Ampel-Demonstrators blinken lassen. Im weiteren Verlauf könnte auch das HMI zur Darstellung des Ampel-Demonstrators mit eingebunden werden.