AEP Gruppe B5 - SoSe18: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Zeile 85: Zeile 85:


== Umsetzung der Spielstrategie ==
== Umsetzung der Spielstrategie ==
Zur Realisierung der Spielstrategie und Implementierung der Unterprogramme und des Hauptprogramms wurde [https://de.wikipedia.org/wiki/Matlab Matlab<ref> Matlab - https://de.wikipedia.org/wiki/Matlab </ref>] und später mit dem Unterprogramm [https://de.wikipedia.org/wiki/Simulink Simulink <ref> Simulink - https://de.wikipedia.org/wiki/Simulink </ref>] verwendet. Dieses benutzt die Programmiersprache [https://de.wikipedia.org/wiki/Not_eXactly_C NXC <ref> NXC - https://de.wikipedia.org/wiki/Not_eXactly_C </ref>] (Not eXactly C).  
Zur Realisierung der Spielstrategie und Implementierung der Unterprogramme und des Hauptprogramms wurde [https://de.wikipedia.org/wiki/Matlab Matlab<ref> Matlab - https://de.wikipedia.org/wiki/Matlab </ref>] und später das Unterprogramm [https://de.wikipedia.org/wiki/Simulink Simulink <ref> Simulink - https://de.wikipedia.org/wiki/Simulink </ref>] verwendet.
<br>Da an dieser Stelle eine vollständige Präsentation des Spielprogramms nicht vorgesehen ist, werden „nur“ die Befehle zur Ansteuerung der Motoren sowie Sensoren vorgestellt:
<br>Da an dieser Stelle eine vollständige Präsentation des Spielprogramms nicht vorgesehen ist, werden „nur“ die Befehle zur Ansteuerung der Motoren sowie Sensoren vorgestellt:



Version vom 5. Juli 2018, 19:00 Uhr

Autor: Darius Wude

Einleitung

Das Ziel des Praktikums besteht darin einen LEGO - Roboter zu konstruieren und zu programmieren, der selbstständig eine Parklücke erkennt und schnellstmöglich in diese einparkt.

LEGO-Modell [1]

Teammitglieder

In diesem Abschnitt werden kurz die Teammitglieder, die an diesem Projekt beteiligt waren, und ihre Tätigkeiten vorgestellt.

  1. Alexander Thumann
    • Bau des Roboters (Version 1.0)
    • Überarbeitung des Roberters
    • Entwicklung einer Strategie
    • Implementierung der Spielstrategie in Matlab und Simulink
  2. Darius Wude
    • Bau des Roboters (Version 1.0)
    • Entwicklung einer Strategie
    • Implementierung der Strategie in Matlab
    • Erstellung des HSHL - Wiki - Artikels
  3. Leon Brölemann
    • Bau des Roboters (Version 1.0)
    • Überarbeitung des Roberters
    • Entwicklung eines Konzepts/einer Spielstrategie
    • Implementierung der Strategie in Matlab und Simulink
    • Nachbau des Roboters als LEGO - Modell mit dem LEGO - Designer

Die Parksituation

Zunächst fährt der Roboter an den möglichen Parkplätzen vorbei, bis er eine Parklücke findet, die groß genug zum erfolgreichem Einparken ist.
Dann soll er so schnell wie möglich in dieser freien Parklücke einparken.

Regelwerk

Wie auch im echten Leben soll hier auf die STVO Rücksicht genommen werden. Das vollständige Regelwerk dazu ist hier [2] zu finden.

Hardware

Als Hardware wurde ein LEGO – Mindstorms - Set [3] benutzt. In diesem Set sind ein NXT-Brick [4], welcher unter anderem einen Microcontroller beinhaltet, der sich programmieren lässt, 3 Servomotoren, ein Ultraschallsensor, zwei Tastsensoren, ein Lichtsensor und ein Geräuschesensor enthalten.
Der Lichtsensor und der Geräuschesensor, sowie die Tastsensoren werden in unserem Projekt nicht verwendet, da es für diese Sensoren keinerlei sinnvolle Anwendung für ein erfolgreiches Einparken gibt.
Der Ultraschallsensor wird zum erkennen der Parklücke verwendet. Zudem wird mit Hilfe der Anzahl der Umdrehungen des Motors und dem Ultraschallsensor die größe der Parklücke ausgerechnet.

Damit der Roboter nun bei der Suche der Parklücke auch wirklich geradeaus fährt, benötigt es einen zusätzlichen Sensor, der in dem LEGO – Mindstorms – Set nicht enthalten ist. Das wäre der Gyrosensor [5]. Dieser Sensor wird von der Firma HiTechnic [6] hergestellt. Die Servomotoren sowie der Ultraschallsensor werden im Folgenden noch kurz vorgestellt.

Servomotoren

Der NXT benutzt Servomotoren, die je nach Belieben nach Zeit, Geschwindigkeit, Strecke und Winkel angesteuert werden können. Mit den eingebauten Rotationssensoren lassen sich die Umdrehungszahlen in Grad speichern und über verschiedene Befehle rotieren, vor und zurück fahren oder bremsen. Der NXT-Brick bietet 3 Möglichkeiten, um die Servomotoren anzuschließen.

Ultraschallsensor

Der Ultraschallsensor funktioniert, wie der Name schon sagt mit Hilfe von Ultraschallwellen um Abstände zu bestimmen. Hier für muss der Sensor sowohl Ultraschallwellen aussenden können, als auch diese empfangen können.
Der Ultraschallsensor kann dann mit Hilfe der verstrichenen Zeit die Entfernung in 'cm' ausrechnen.
Allerdings nur bis zu 255 cm.

Bilder des Roboters

Mit dem LEGO Digital Designer [10] haben wir den Roboter in einem 3D-Modell nachgebaut. Eine Bauanleitung, um den Roboter nachzubauen befindet sich hier: Datei:Bauanleitung B5.pdf

Spielstrategie

Zur Entwicklung einer Spielstrategie für das Spielprogramm wird zunächst ein Programmablaufplan mit dem Programm „PaP-Designer“ [11] erstellt. Bei unserer Spielstrategie benutzen wir drei Unterfunktionen:Parklücke Suchen, Parklücke Messen und Einparken. Diese drei Unterfunktionen werden dann in einem Multitaskingprogramm in einer Zustandsmaschine im Hauptprogramm zusammengeführt.

Hauptprogramm

Hauptprogramm
Beim Start des Hauptprogramms werden zunächst alle Sensoren auf ihre jeweiligen Ports initialisiert. Danach wird der aktuelle Zustand abgefragt. Solange man nicht richtig eingeparkt hat werden dann die einzelnen Unterprogramme (je nach aktuellem Zustand) aufgerufen.

Parklücke Suchen

Parklücke Suchen
Parklücke Suchen

Solange der Abstand zur Wand zu gering ist soll der Nxt geregelt geradeaus fahren. Falls die Parklücke breit genug ist, ist die nächste Phase des Einparkens erreicht.

Parklücke Messen

Parklücke Messen
Parklücke Messen

Der Roboter fährt parallel zur Parklücke bis der Abstand zur Wand wieder schrumpft.
Mit Hilfe der Umdrehungen des Motors seit Parklückenbeginn und dem Durchmesser der Reifen kann die Länge der Lücke errechnet werden.
Falls die Parklücke lang genug ist wird der Zustand auf 3 gesetzt (eine passende Parklücke wurde gefunden) sonst wieder auf 1 (eine neue Parklücke muss gesucht werden).

Einparken

Einparken
Einparken

Wenn eine Parklücke gefunden wurde, in die der Roboter passt, beginnt der Nxt mit dem Einparken.

Umsetzung der Spielstrategie

Zur Realisierung der Spielstrategie und Implementierung der Unterprogramme und des Hauptprogramms wurde Matlab[12] und später das Unterprogramm Simulink [13] verwendet.
Da an dieser Stelle eine vollständige Präsentation des Spielprogramms nicht vorgesehen ist, werden „nur“ die Befehle zur Ansteuerung der Motoren sowie Sensoren vorgestellt:


Motoren
OnFwd(OUT_AC, 75);
Dieser Befehl lässt den Roboter geradeaus fahren. Als Parameter werden dafür die Motoren an den Ausgängen A und C und die Geschwindigkeit (75) übergeben.


OnRev(OUT_AC, 75);
Diese Anweisung funktioniert genauso wie OnFwd(), lässt die Motoren diesmal nur rückwärts drehen, sodass der Roboter rückwärts fährt.


Off(OUT_AC);
Mit diesem Befehl werden die Motoren an den Ausgängen A und C gestoppt.


Float(OUT_AC);
Dieser Befehl bremst wie der Befehl Off(), jedoch wird hier einfach die Stromzufuhr zu den Motoren abgeschnitten, was ein Ausrollen der Motoren zu Folge hat.


OnFwdSync(OUT_AC, 75, 50);
Mit dieser Anweisung lassen sich Bögen mit dem Roboter fahren. Der letzte Parameter gibt dabei den Radius des Bogens an.
Bei 0 würde der Roboter ganz normal vorwärts fahren. Bei immer größer werdenden Werten, fährt der Roboter immer Stärker zur Seite. Der Wert 50 dreht nur einen der beiden Motoren, sodass der Roboter praktisch in einem Winkel von 90° fährt. Ein Wert von 127 lässt die beiden Motoren entgegengesetzt drehen, der Roboter dreht sich also auf der Stelle.


OnFwdReg(OUT_AC, 75, mode);
Dieser Befehl reguliert die Motoransteuerung. Die ersten beiden Parameter dieser Anweisung stehen wieder für die Ausgänge der Motoren und die Geschwindigkeit. Für den letzten Parameter gibt es jedoch drei verschiedene Modi.

  • OUT_REGMODE_IDLE Bei diesem Modus findet keine Synchronisation der Motoren statt.
  • OUT_REGMODE_SPEED Synchronisation durch Anpassung der Geschwindigkeit. Unterschiede werden dabei durch Schneller- bzw. Langsamer- Drehen der Motoren ausgeglichen.
  • OUT_REMODE_SYNC Synchronisierung der Rotationen. Unterschiede werden bei diesem Modus durch Pausieren eines Motors ausgeglichen.


Sensoren

  • Tastsensor

SetSensorTouch(IN_1);
Der Befehl initialisiert den Tastsensor an Port 1.


x = SENSOR_1;
Gibt den Zustand des Tastsensors zurück und schreibt ihn in die Variable x.


  • Infrarotsensor

SetSensorLowspeed(IN_3);
Initialisert den Infrarotsensor an Port 3.


ReadSensorHTIRSeeker2AC(IN_3, richtung, s1, s3, s5, s7, s9);
Gibt in richtung zurück, in welchem Bereich des Infrarotsensors sich eine Infrarotquelle befindet. In s1 bis s9 wird die Stärke der Quelle in den einzelnen Bereichen zur Positionsbestimmung gespeichert.


  • Kompasssensor

SetSensorLowspeed(IN_4);
Initialisiert den Kompasssensor an Port 4.


x = SensorHTCompass(IN_4);
Gibt den Wert des Kompass an Port 4 aus und speichert ihn in der Variablen x.


Weitere nützliche Befehle, Beispiele und Erläuterungen lassen sich hier [14] und in dem Buch „Roboter programmieren mit NXC für LEGO Mindstorms NXT“ [15] von Daniel Braun finden, welches auch von uns genutzt wurde.

YouTube - Video

Zur bildlichen Veranschaulichung wurde ein YouTube - Video erstellt, welches hier [16] zu finden ist.

Lernerfolg

Bei diesem Projekt können sowohl erste Erfahrungen in der C-Programmierung, als auch in der Konstruktionstechnik, beim Bauen des Roboters, gesammelt werden. Dabei lernt man verschieden Sensoren und deren Funktionsweise und Programmierung kennen. Außerdem lernt man, zunächst ein Konzept zu entwickeln, welches man anschließend mit einer angemessenen Dokumentation in die Tat umsetzt. Es gilt dabei Probleme im Team zu lösen und sich untereinander abzusprechen.

Projektunterlagen

Alle Projektunterlagen lassen sich hier(nur mit Zugangsberechtigung) [17] finden.

Literaturverzeichnis


→ zurück zum Hauptartikel: Informatikpraktikum WS 17/18