RoboSoccer Gruppe B3 - WS 17/18: Unterschied zwischen den Versionen
Zeile 38: | Zeile 38: | ||
- Konstruktion und Bau des Roboters <br/> | - Konstruktion und Bau des Roboters <br/> | ||
- Programmieren mit NXT G und NXT C <br/> | - Programmieren mit NXT G und NXT C <br/> | ||
- Pflege des Quellcodes | - Pflege des Quellcodes <br/> | ||
- Pflege des SVN Dateimanagmentsystems | - Pflege des SVN Dateimanagmentsystems | ||
<br/> | <br/> |
Version vom 20. Januar 2018, 01:47 Uhr
Das Modul Informatik 1 im WS 17/18 Studiengang Mechatronik an der HSHL beeinhaltet ein Praktikum, federführend geleitet von Prof.Schneider. Zielsetzung dieses Praktikums ist es, einen fussballspielenden Roboter zu entwickeln, zu konstruieren und zu programmieren. Dabei soll der Roboter in der Lage sein ein bewegliches Objekt (Ball) auf einem Spielfeld autonom zu identifizieren und in das gegnerische Tor zu schiessen. Es gillt auch Hindernisse wie den gegnerischen Roboter zu umgehen.
Als Hilfsmittel zur Umsetzung steht das Lego MindstormsTM Baukastensystem des Spielzeugherstellers LegoTM zur Verfügung. Programmiert wird der Roboter zunächst über die GUI Plattform NXT G des Herstellers, später mit der Programmiersprache "NXC" und dem frei zugänglichem Windowstool "Brixc Command Center". So werden auch komplexere Manöver möglich.
Dabei ist jeder Gruppe, im Sinne der Regeln, freigestellt, wie die Konstruktion und ihre Parameter, die Mindstorms-Sensoren sowie formale und inhaltliche Ausgestaltung ihrer Problemlösungstrategien aussehen.
Vermittelte Lernziele des Praktikums
• Konstruieren eines Roboters mit Hilfe von Lego Mindstorms
• Einarbeiten in die Programme NXT G und Brixc Windows Commander
• Einarbeiten in das Dateimanagmentsystem SVN Tortoise
• Kennenlernen von Roboter, Sensoren und Aktoren
• Darstellen von Kennwerten in Grafen mit NXT G
• Ausarbeiten eine Programmablaufplans
• Erstellen eines übersichtlichen Quellcodes
• Präsentation der Eigenarbeit
• Konzeptentwicklung und Planung einzelner Aufgaben und verteilung dieser auf einzelne Gruppenmitglieder
• Arbeiten im team
Teammitglieder der Gruppe B3
Ramo Agic
- Erstellung des PAP
- Programmieren mit NXT G und C Pflege des SVN Dateimanagmentsystems
- Erstellen des Wikiartikels
- Pflege des SVN Dateimanagmentsystems
Henning
- Konstruktion und Bau des Roboters
- Programmieren mit NXT G und C
- Erstellung des Konstruktionsplans
- Pflege des SVN Dateimanagmentsystems
Alex
- Konstruktion und Bau des Roboters
- Programmieren mit NXT G und NXT C
- Pflege des Quellcodes
- Pflege des SVN Dateimanagmentsystems
Hardware
Der erste Schritt war die Planung und Konstruktion des Roboters. Wichtige Faktoren hierbei sind die Fähigkeit den Ball richtig zu orten, die Mobilität um den Ball zu erreichen und die Fähigkeit denselbigen per Schussmechanismus ins gegnerische Tor zu befördern. Gelenkt wird der Roboter in unserem Fall über eine als Hinterrad montierte, frei rotierende Kugel. Dies ermöglicht einen geringen Wendekreis und hohe Mobilität.
Eine wichtige Rolle spielen bei dem ganzen die Sensoren. So sind an unserem Roboter ein IR-Sensor, ein Tastsensor, ein Kompasssensor und ein EOPD-Sensor zur Entfernungsmessung angebracht. Der IR-Sensor dient hierbei zur Bestimmung und Ausrichtung zum Ball. der per Dioden IR-Signale aussendet, die vom Sensor erfasst und vom NXT-Baustein in der Intensität und Richtung ausgewertet werden können. Auf der folgenden Internetseite wird die Funktionsweise (samt Code!) des IR-Sensors exemplarisch erörtert. Der Roboter richtet sich so zum Ball aus und steuert diesen an, per Verknüpfung über IR-Signal und Antriebsmotoren. Der Greifmechanismus arretiert den Ball. Per Kompasssensor (Nord-Süd Ausrichtung) wird sich zum gegnerischen Tor ausgerichtet. Zum fehlerfreieren erkennen des Balls und auslösen des Schussmechanismus, haben wir zusätzlich einen EOPD-Sensor angebracht. Dies erhöht die Zuverlässigkeit der Erkennung des Balls, als wenn dies nur per Tastsensor geschieht.
Gehirn und somit Steuerungszentrale des ganzen ist der erwähnte NXT-Baustein der per I2C-Busprotokoll mit den Sensoren seriell kommuniziert. Die mögliche Datenrate ist mit 1024 Knoten und 425kb/s zwar niedrig aber so wird eine zuverlässige Übertragung garantiert.
Ein A/D-Wandler, wandelt schliesslich die analogen Input-Signale der Sensoren, in digitale für den Microcontroller des NXT.
Fahrzeugparameter
Parameter | Wert |
---|---|
Länge | xxx |
Breite | xxx |
Spurweite (vorn) | xxx |
Spurweite (hinten) | xxx |
Achsabstand | xxx |
Max. Lenkeinschlag | xxx |
Max. Geschwindigkeit | xxx |
Software
...
Programmablaufplan
Fazit und Ausblick
...
Video und Links
...