Use MATLAB to Train on Jetson Nano: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
| Zeile 39: | Zeile 39: | ||
! # !! !! Description !! Pictures | ! # !! !! Description !! Pictures | ||
|- | |- | ||
| 1 || Access GPU APP || Matlab provides built-in app to generate Cuda compatible code.|| [[Datei:Gpu coder APP.png|mini]] | | 1 || Access GPU APP || Matlab provides built-in app to generate Cuda compatible code.|| [[Datei:Gpu coder APP.png|mini|Fig. 10: Gpu coder APP]] | ||
|- | |- | ||
| 2 || Select Entry-Point Function|| For CUDA code to be successfully generated, the MATLAB script must be a function. Hence, your script needs to be converted to a function. || | | 2 || Select Entry-Point Function|| For CUDA code to be successfully generated, the MATLAB script must be a function. Hence, your script needs to be converted to a function. || | ||
[[Datei:Gpu coder function.png|mini]] | [[Datei:Gpu coder function.png|mini|Fig. 11: Gpu coder function]] | ||
|- | |- | ||
| 3 || Select Input types|| A second file is required for the GPU Coder to Know what asre the inputs and Outputs || | | 3 || Select Input types|| A second file is required for the GPU Coder to Know what asre the inputs and Outputs || | ||
[[Datei:Input Types.png|mini]] | [[Datei:Input Types.png|mini|Fig. 12: Input Types]] | ||
|- | |- | ||
| Zeile 52: | Zeile 52: | ||
|- | |- | ||
| 5 || Generate c/c++ || Check for errors and Generated folders || | | 5 || Generate c/c++ || Check for errors and Generated folders || | ||
[[Datei:Generated Cuda Code.png|mini]] | [[Datei:Generated Cuda Code.png|mini|Fig. 13: Generated Cuda Code]] | ||
|} | |} | ||
Version vom 12. Juni 2025, 20:22 Uhr
Setup
Overview
To train the AI using MATLAB, I will write a script on MATLAB and then use GPU Coder to flash the function/model on the JetRacer. So all the debugging process will be on MATLAB.
Key Concepts
- Deep Learning with MATLAB
- The fundamental of training an AI system is called deep learning. MATLAB provides a variety of helpful toolboxes, pre-trained networks, and tools to process data into useful input for an AI [1].
- The training can be stored as a model, usually in a .MAT format, which can be reused. Hence, we do not have to train a model every time we want to use it.
- Data preprocessing—including image resizing, augmentation, and normalization—is handled with MATLAB functions such as imageDatastore and augmentedImageDatastore.
| # | Description | Pictures | |
|---|---|---|---|
| 1 | Data Processing |
|
|
| 2 | Model training | Here is an important aspect of training because all training parameters, configurations and directions are ensured. | |
| 3 | Output | Trained networks are exported to a .mat file, encapsulating weights, architecture, and training metadata for reuse. |
- Gpu Coder
- GPU Coder generates optimized CUDA® C++ from your MATLAB® algorithms, unlocking the parallel compute power of the Jetson GPU for real-time processing on your JetRacer and improve 40 times the performance on the jetracer [2][3].
- Helps target GPUs for automotive applications.
Result
generated files



