Winkerrätsel - Entschlüsselung der Signalcodes: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Markierung: Manuelle Zurücksetzung
Zeile 191: Zeile 191:
|0 €
|0 €
|Signalflaggen  
|Signalflaggen  
|--
|
|Die Fahnen können selbst hergestellt werden
|Die Fahnen können selbst hergestellt werden
|[[Datei:Widerstand.png|125px|mini|links|Abb. 08: Widerstand 10k]]
|[[Datei:Widerstand.png|125px|mini|links|Abb. 08: Widerstand 10k]]
Zeile 201: Zeile 201:
|0€
|0€
|Map mit FlaggensignalenMap mit Flaggensignalen
|Map mit FlaggensignalenMap mit Flaggensignalen
|--
|
|Das Map können selbst hergestellt werden
|Das Map können selbst hergestellt werden
|
|

Version vom 10. Oktober 2024, 20:06 Uhr

Autor: Benedikt Lipinski und Weiran Wang

Strichfigürchen mit einer Kommunikationsaufforderung durch Flaggensignal
"Attention", darf ich um Ihre Aufmerksamkeit bitten - Mit dieser Flaggen bewegung wird in der Flaggen Semaphore eine Verbindung aufgebaut. Vorlage:Anker

Einleitung

Unter Flaggenwinken versteht man in der Nautik nicht das wilde Gestikulieren mit einer Fahne, sondern vielmehr ein komplexes System rein optischer Kommunikation. Während sich an Land schon früh die Kommunikation mittels optischer Telegrafie durchsetzte[1], wurde auch in der Schifffahrt die Kommunikation mittels Flaggenzeichen, den so genannten Semaphoren, immer populärer. Heute wird aufgrund der leistungsfähigen Funktechnik in der Regel nicht mehr mit Flaggen kommuniziert. Dennoch soll die Kommunikation via flaggen auch im Zeitalter der Elektronischen kommunikation zum Einsatz kommen, z.B. von der US Navy bei der Betankung von Schiff zu Schiff.[2]
Der Spieler soll nun selbst die Rolle eines Kommunikationspartners übernehmen und seinem Gegenüber (dem Spiel) eine geheime und verschlüsselte Nachricht zukommen lassen.

Theoretische Grundlagen

Flaggen Semaphore

Video 1: Demonstration Winkeralphabet

Eine Kommunikation über Flaggen ist, anders als man auf den ersten Blick vermuten könnte, gar nicht so weit von der Kommunikation entfernt, die uns Studierenden der 2020er Jahren in den Informatikmodulen gelehrt wird[3]. Denn die in dem "Video 1" zusehende und für Menschen lesbare Codierung einzelner Flaggenpositionen ist nichts anderes als die Codierung von Zeichen in eine Bitfolge, nur dass sich an dieser Stelle die Codierung der Nachricht und das Transportprotokoll unterscheiden[4]. Die Kommunikation mit den Flaggen beginnt mit der Aufforderung zum Verbindungsaufbau (Attention #Anker:AttentionMessage).

Tabelle 1: Semaphore Alphabet
#
1 A Buchstabe A im Semaphorealphabet 2 B Buchstabe B im Semaphorealphabet 3 C Buchstabe C im Semaphorealphabet 4 D

Buchstabe D im Semaphorealphabet

5 E Buchstabe E im Semaphorealphabet 6 F Buchstabe F im Semaphorealphabet 7 G Buchstabe G im Semaphorealphabet 8 H Buchstabe H im Semaphorealphabet
9 I Buchstabe I im Semaphorealphabet 10 J Buchstabe J im Semaphorealphabet 11 K Buchstabe K im Semaphorealphabet 12 L Buchstabe L im Semaphorealphabet
13 M Buchstabe M im Semaphorealphabet 14 N Buchstabe N im Semaphorealphabet 15 O Buchstabe O im Semaphorealphabet 16 P Buchstabe P im Semaphorealphabet
17 Q Buchstabe Q im Semaphorealphabet 18 R Buchstabe R im Semaphorealphabet 19 S Buchstabe S im Semaphorealphabet 20 T Buchstabe T im Semaphorealphabet
21 U Buchstabe U im Semaphorealphabet 22 V Buchstabe V im Semaphorealphabet 23 W Buchstabe W im Semaphorealphabet 24 X Buchstabe X im Semaphorealphabet
25 Y Buchstabe Y im Semaphorealphabet 26 Z Buchstabe Z im Semaphorealphabet

Bestehende Arbeiten

Die Eingabe von Flaggensignalen in ein Computersystem ist nicht nur als Rätsel für ein Escape-Game interessant, sondern auch in anderen Projekten ein nicht zu vernachlässigender Faktor. Beispielsweise kann die Abbildung des Flaggenalphabets auf die Arme eines Benutzers dazu verwendet werden, Tastenanschläge auf der Tastatur zu simulieren. Ein Beispiel dafür ist das GitHub-Projekt des Entwicklers everythingishacked, der eine vollständige Tastatursimulation mit Hilfe von Handsemaphoren in Python umgesetzt hat[5]. Auch in der Mathematiksoftware Matlab gibt es bereits Beispiele für Vorstufen einer Armpositionserkennung[6] In beiden Fällen führt der Weg zur Buchstabenerkennung über den Schritt einer Schätzung der Körperhaltung. Konkret ist in diesem Fall die Ermittlung mittels Deep Learning Algorithmen gemeint.

Anforderungen

Tabelle 2: Anforderungen an das Winkerrätsel
ID Inhalt Erstellt von: Erstellt am: Geprüft von: Geprüft am:
1 System Anforderungen
1.1 Das System muss eine Person durch bildbasierte Verfahren identifizieren. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.2 Das System muss die Armhaltung erkennen. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.3 Das System muss die Position der Arme in Winkel umwandeln. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.4 Das System muss die Winkel in Buchstaben einteilen. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.5 Das System muss eine Rückmeldung über den eingegebenen Buchstaben geben. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.6 Das System muss eine Rückmeldung über die richtige Eingabe signalisieren, wenn der Buchstabe richtig angezeigt wird. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.7 Das System muss bei korrekter Eingabe eine korrekte Stelle des Lösungswortes ausgeben. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.8 Zur Erkennung der menschlichen Körperhaltung ist die Open-CV-Bibliothek zu verwenden. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.9 Die verwendete Kamera muss eine Auflösung haben, bei der eine Person vollständig in das Bild passt. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.10 Das Spiel soll per Knopfdruck oder über eine angeschlossene Tastatur gestartet werden. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.11 Der Schwierigkeitsgrad muss über eine Taste oder eine angeschlossene Tastatur einstellbar sein. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.12 Im Profi-Spielmodus sollen nicht nur Buchstaben, sondern auch kurze Wörter oder Zahlen eingegeben werden. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.13 Im Profi-Spielmodus soll die bisherige Eingabe auf dem Bildschirm angezeigt werden. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.14 Im Spielmodus Profi muss das Löschen der letzten Ziffer durch ein Flaggensignal möglich sein. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.15 Das System soll nach Möglichkeit in Matlab realisiert werden; sollten gute Gründe gegen die Verwendung von Matlab sprechen, wird alternativ die Sprache Python verwendet. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
1.16 Im Anfängermodus soll die spielende Person eine Hilfestellung erhalten Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
2 Oganisatorische Anforderungen
2.1 Das Rätsel soll nach Erklärung innerhalb von 5 Minuten lösbar sein. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
2.2 Das Puzzle soll verschiedene Schwierigkeitsgrade haben. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
2.3 Das Material zum Verständnis des Puzzles sollte in nicht-elektrischer Hardware vorhanden sein. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024
2.4 Das System muss zur Aufbewahrung und zum Transport in einen Schuhkarton passen. Benedikt Lipinski 10.10.2024 Weiran Wang 10.10.2024

Funktionaler Systementwurf/Technischer Systementwurf

Funktionaler Systementwurf

Ablauf des Winkerrätsels
Bild 2: Ablauf des Winkerrätsels

Als Vorbereitung für das Winkerrätsel, zunächst durch die spielende Person, der Schwierigkeitsgrad gewählt werden. Das Spiel beginnt bei dem Winkerrätsel nicht mit dem drücken eines Startbuttons oder ähnlichem, sondern in Escape-Room Manier mit dem erkennen des Problems selbst. Hierzu bekommt die Spielende Person nach einstellen des Schwierigkeitsgrades, lediglich die 2 Flaggen und Literatur über Signale ausgehändigt. Somit ergibt sich als erste Aufgabe für die Spielenden, unter zu Hilfenahme der Flaggen zu erkenne, dass es sich bei der geforderten Aufgabe um das Winkeralphabet handelt. Mit der Erkenntnis aus der Literatur und der Tatsache, dass die spielende Person bereits unweigerlich Feedback zur erkannten Position bekommen wird, sollte durch die spielende Person kombiniert werden, nun mittels Körperposition den erhaltenen Rätselcode einzugeben.‎
Die spielende Person wird aufgrund des grafischen Feedbacks schnell verstehen, dass bei korrekter Eingabe eines Buchstabens, dieser umcodiert wird. Für den Spielmodus Profi, bei dem die spielende Person kleine Wörter aus der gängigen Sprache oder dem Internationalen Signal Kommunikation verwendet werden, bekommt die nutzende Person die bereits korrekt eingegebenen Buchstaben aufgelistet. Zudem wird der nutzenden Person aufgezeigt ob die eingegebene stelle korrekt oder falsch ist. Ziel ist es an dieser stelle, das Korrektur Signal zu benutzen. ‎
Mit der erfolgreichen Entschlüsselung der letzten Stelle, hat die spielende Person das Rätsel beendet und sich innerhalb des gesamten Spiels Schritt für schritt das Lösungswort erspielt. An dieser stelle ist nun auch das Winkerrätsel beendet. Grundsätzlich stehen der spielenden Person 3 Spielmodi zur Verfügung. Leicht: hier soll eine visuelle Hilfestellung für die spielende Person gegeben werden, diese muss durch die spielende Person nur noch Nach gemacht werden.
Im fortgeschrittenen Modus muss die Spielende Person, sich nun selbst an die Einzunehmende Position erinnern oder im Buch nachschlagen. Eingegeben werden müssen in diesem Modus auch nur einzelne Buchstaben. Der schwierigste Spielmodus, nur geeignet für Profis, fordert von der nutzenden Person die Eingabe kurzer Wörter, was gegebenen falls das Korrigieren der Eingabe nötig macht. Der Ablauf des Winkerrätsels, wie er aus der Sicht des Anwenders dargestellt werden soll, kann dem Ablaufschema in Bild 2 entnommen werden.

Technischer Systementwurf

Relevante, technische Komponenten des Winkerrätsels
Bild 3: Relevante, technische Komponenten des Winkerrätsels

Da der im Arduino Uno R3 verwendete Atmega328-Mikrocontroller hinsichtlich Datenverarbeitung, RAM und Flash-Speicher begrenzt ist und somit für Bildverarbeitungsaufgaben ungeeignet, wird der Raspberry Pi 4B als Ersatz eingesetzt, um die Kernaufgaben der maschinellen Bildverarbeitung zu übernehmen. Das System wird über ein 5V 5A Netzteil mit Strom versorgt, um den stabilen Betrieb aller Geräte zu gewährleisten.

In diesem Flaggen-Signal-Interaktionssystem fungiert eine Kamera als Sensor, die über das USB-Protokoll Bilddaten an den Raspberry Pi 4B überträgt. Der Raspberry Pi 4B verwendet vordefinierte Algorithmen, um die von den Spielern eingegebenen Flaggen-Signale zu erkennen, und gibt Rückmeldungen über ein 128x64 Pixel Display aus. Das Display ist über das SPI-Protokoll mit dem Raspberry Pi 4B verbunden, um eine effiziente Datenübertragung sicherzustellen.

Darüber hinaus ist das System mit einem Moduswahlknopf ausgestattet, der an die GPIO-Pins des Raspberry Pi 4B angeschlossen ist. Durch Überwachung der Spannungsänderungen an den Pins kann das System die Benutzereingaben erkennen und verarbeiten.

Das gesamte System wird auf einer speziell angefertigten Leiterplatte integriert, um eine saubere und zuverlässige Verbindung der Leitungen sicherzustellen und das Gerät erfolgreich in ein Gehäuse von der Größe einer Schuhschachtel einzubauen. Eine Gesamtübersicht über die beschriebenen Komponenten und ihre Verknüpfung ist in "Bild 3" dargestellt.

Material und Stückliste

ID Anzahl Kosten pro Stück € Summe Bezeichnung / Komponente technische Bezeichnung Beschreibung Abbildung
1 1x 58,40€ 58,40€ RASP PI 5B 4GB mit Ladegerät und Gehäuse RPI5 BBDL 4GB Das Raspberry PI 5 B 4GB Black Bundle Der Raspberry Pi 5 ist ein fortschrittlicher Einplatinencomputer mit einem 2,4 GHz Quad-Core ARM Cortex-A76-Prozessor, Durch den schnelleren Prozessor und verbesserte GPU eignet sich der Raspberry Pi 5 hervorragend für rechenintensive Projekte wie Bildverarbeitung
Abb. 04: Arduino Uno
2 1x 0,2€ 0,2€ Kurzhubtaster JTP-1130 Kurzhubtaster 6x6 mm, Höhe: 13 mm, 12 V, vert Ein Kurzhubtaster 6x6 mm ist ein kleiner, mechanischer Taster mit einem standardisierten Gehäuse von 6x6 mm Größe und kurzem Hubweg
Abb. 05: Taster
3 1x 9,9€ 9,9€ LCD128X64 DEBO LCD128X64 Entwicklerboards - Display Grafik-LCD, 128x64 Pixel Das LCD-Display 128x64 Pixel aus dem verlinkten Angebot ist ein grafisches Displaymodul, das eine Auflösung von 128x64 Pixeln bietet. Es eignet sich ideal für Entwicklerprojekte, bei denen eine einfache Anzeige von Grafiken, Symbolen oder Texten erforderlich ist
Abb. 06: 7 Segment Display
4 1x 14,95€ 14,95€ Webcam AMDIS03B Webcam, 720p, HDready 720p HD Webcam (Modell: AMDIS03B) bietet eine Auflösung von 1280x720 Pixeln und ist ideal für einfache Videoanwendungen
Abb. 07: 7 Segment Decoder
5 2x 0 € 0 € Signalflaggen Die Fahnen können selbst hergestellt werden
Abb. 08: Widerstand 10k
6 1x 0€ 0€ Map mit FlaggensignalenMap mit Flaggensignalen Das Map können selbst hergestellt werden
Abb. 09: Summer

Komponentenspezifikation

Ansatz

Umsetzung (HW/SW)

Komponententest

Ergebnis

Fehler

Zusammenfassung

Lessons Learned

Projektunterlagen

Projektplan

Projektdurchführung

YouTube Video

Quellen


→ zurück zur Übersicht: WS 24/25: Escape Game

  1. SELLERI, Stefano, 2017. Claude Chappe and the first telecommunication network (without electricity). URSI Radio Science Bulletin [online]. März 2017. Bd. 2017, Nr. 360, S. 96–101. [Zugriff am: 1 Oktober 2024]. DOI 10.23919/URSIRSB.2017.8113174. Verfügbar unter: https://ieeexplore.ieee.org/document/8113174/?arnumber=8113174
  2. Navy Seaman Ryan Ruona uses semaphore flags to signal another ship., [kein Datum]. [online]. [Zugriff am: 1 Oktober 2024]. Verfügbar unter: https://www.defense.gov/Multimedia/Photos/igphoto/2001244016/
  3. Codierung von Texten - Fakultät für Elektrotechnik, Informatik und Mathematik - Fakultäten - Kategorien - Videoportal der Uni Paderborn, [kein Datum]. [online]. [Zugriff am: 1 Oktober 2024]. Verfügbar unter: https://videos.uni-paderborn.de/category/video/codierung-von-texten/3a9cfca393633045f308a88c20e8ad82/7
  4. Education Codes and Communication, [kein Datum]. National Museum of the Marine Corps [online]. [Zugriff am: 1 Oktober 2024]. Verfügbar unter: https://www.usmcmuseum.com/uploads/6/0/3/6/60364049/nmmc_semaphore_flag_booklet_final_1.pdf
  5. EVERYTHINGISHACKED, [kein Datum]. Semaphore [online]. Verfügbar unter: https://github.com/everythingishacked/Semaphore
  6. Estimate Body Pose Using Deep Learning - MATLAB & Simulink - MathWorks Deutschland, [kein Datum]. [online]. [Zugriff am: 2 Oktober 2024]. Verfügbar unter: https://de.mathworks.com/help/deeplearning/ug/estimate-body-pose-using-deep-learning.html