Grove - Wassersensor: Unterschied zwischen den Versionen
Zeile 51: | Zeile 51: | ||
*'''Thema/Fragestellung:''' Feststellen ob es zum gegenwärtigen Zeitpunkt Niederschlag gibt mittels des Grove Water Sensor. | *'''Thema/Fragestellung:''' Feststellen ob es zum gegenwärtigen Zeitpunkt Niederschlag gibt mittels des Grove Water Sensor. | ||
*'''Hypothese:''' Niederschlag lässt sich über den Grove Water Sensor feststellen. | *'''Hypothese:''' Niederschlag lässt sich über den Grove Water Sensor feststellen. | ||
* '''Einordnung in den Lehrplan:''' | * '''Einordnung in den Lehrplan:''' Die im Modul '''Angewandte Informatik''' vermittelten Lernziele, werden im Rahmen dieses Praxisbeispiels angewendet. Folgende Lernziele gilt es dabei zu überprüfen. | ||
Die im Modul '''Angewandte Informatik''' vermittelten Lernziele, werden im Rahmen dieses Praxisbeispiels angewendet. Folgende Lernziele gilt es dabei zu überprüfen. | |||
** mit der Versionskontrolle SVN nachhaltig Quelltext entsprechend der Programmierrichtlinien schreiben, sichern, kollaboriert bearbeiten und Konflikte lösen. | ** mit der Versionskontrolle SVN nachhaltig Quelltext entsprechend der Programmierrichtlinien schreiben, sichern, kollaboriert bearbeiten und Konflikte lösen. | ||
** in einer mathematisch orientierten Systax (z. B. MATLAB®) mit Vektoren und Matrizen rechnen, Programmteile in Funktionen auslagern, Zweige und Scheifen programmieren, Daten importieren und visualisieren. | ** in einer mathematisch orientierten Systax (z. B. MATLAB®) mit Vektoren und Matrizen rechnen, Programmteile in Funktionen auslagern, Zweige und Scheifen programmieren, Daten importieren und visualisieren. | ||
** die Mikrocontrollerplattform Arduino modellbasiert mit Simulink programmieren, so dass Sensoren eingelesen und Aktoren angesteuert werden können. <ref>https://wiki.hshl.de/wiki/index.php/BSE_Angewandte_Informatik_-_SoSe24, abgerufen am | ** die Mikrocontrollerplattform Arduino modellbasiert mit Simulink programmieren, so dass Sensoren eingelesen und Aktoren angesteuert werden können. <ref>https://wiki.hshl.de/wiki/index.php/BSE_Angewandte_Informatik_-_SoSe24, abgerufen am 14.07.2024</ref> | ||
== Projektbeschreibung == | == Projektbeschreibung == |
Version vom 14. Juli 2024, 13:08 Uhr
Autorin: | Denim Hilz |
Studiengang: | Business and Systems Engineering |
Modul: | BSE-M-2-1.03, Hausarbeit in Angewandte Informatik gehalten von Prof. Dr.-Ing. Schneider |
Semester: | Sommersemester 2024 |
Abgabetermin: | 28.07.2024 |
Einführung
Aufgabenstellung
Mit dem Grove - Wassersensor lässt sich beispielsweise
- Niederschlag,
- Flüssigkeitsleckage oder ein
- Tanküberlauf
erkennen.
Anforderungen | |||||||||||||||||||||||||||
|
- Thema/Fragestellung: Feststellen ob es zum gegenwärtigen Zeitpunkt Niederschlag gibt mittels des Grove Water Sensor.
- Hypothese: Niederschlag lässt sich über den Grove Water Sensor feststellen.
- Einordnung in den Lehrplan: Die im Modul Angewandte Informatik vermittelten Lernziele, werden im Rahmen dieses Praxisbeispiels angewendet. Folgende Lernziele gilt es dabei zu überprüfen.
- mit der Versionskontrolle SVN nachhaltig Quelltext entsprechend der Programmierrichtlinien schreiben, sichern, kollaboriert bearbeiten und Konflikte lösen.
- in einer mathematisch orientierten Systax (z. B. MATLAB®) mit Vektoren und Matrizen rechnen, Programmteile in Funktionen auslagern, Zweige und Scheifen programmieren, Daten importieren und visualisieren.
- die Mikrocontrollerplattform Arduino modellbasiert mit Simulink programmieren, so dass Sensoren eingelesen und Aktoren angesteuert werden können. [1]
Projektbeschreibung
# | Anzahl | Material |
---|---|---|
1 | 1 | PC mit MATLAB/Simulink R2022b |
2 | 1 | Grove Water Sensor |
3 | 1 | Arduino Uno R3 |
4 | 1 | Streckbrett |
5 | 5 | Jumper Kabel, männlich/männlich, 20 cm |
6 | 6 | LCD Display |
Beschreibung Funktionsweise der verwendeten Hard- und Software
- Arduino Uno R3
- Sensor Sharp GP2-0430K
- Simulink R2022b
Technische Daten
Messbereich | 0 ° .. 180 ° |
PWM-Modulation | analog |
PWM-Pulszykluszeit | 20 ms |
PWM-Pulsweite | 500-2400 ms |
Versorgungsspannung | 4.0 V .. 7.2 V |
Versorgungsstrom | 20 mA |
Geschwingigkeit | 0,12 s/60 ° (@4,8 V, lastfrei) |
Drehmoment | 1,5 kg/cm (@4,8 V) |
Gewicht | 9 g |
Getriebe | Kunststtoff |
Arbeitstemperatur | 0 °C .. +55 °C |
Abmessungen | 22,2 mm x 11,8 mm x 31 mm |
Pinbelegung
Pin | Belegung | Signal |
---|---|---|
1 | Versorgungsspannung VCC | 5 V |
2 | Triggereingang | TTL-Pegel |
3 | Echo, Ausgang Messergebnis | TTL-Pegel |
4 | Masse (GND) | 0 V |
Versuchsaufbau und Durchführung
Versuchsaufbau
Der Versuchsaufbau wird durch einen Schaltplan (Abb. 2), Anschlussplan (Abb. 3) und Foto des Aufbaus (Abb. 4) dokumentiert.
Versuchsdurchführung
Das Modell zur Datenverarbeitung wurde gemäß Abb. 5 in Simulink aufgebaut. Die Messdaten wurden aufgezeichnet. Ein Video der Versuchsdurchführung findet sich hier.
Modelleinstellungen: Arduino Uno, Solver: Fixed-step, discrete, Abtastrate: 0,001 s
Versuchsbeobachtung
Das Signal des Sensors weist alle 40 ms systematische Ausreisser auf (vgl. Abb. 6, rote Kurve).
Auswertung
Die Messhypothese wurde verworfen. Der Sensor weist systematische Messwertausreisser auf.
Die Ausreisser lassen sich mit einem Signalfilter eliminieren. Hierzu eignet sich ein Rangordnungsfilter (z. B. Median-Filter). Das Filter wird hierzu auf eine Fensterbreite von 30 Werten eingestellt. Das zufriedenstellende Filterergebnis für statische Werte zeigt Abb. 6 als blaue Kurve. Es konnte mit dynamische Werten verifiziert werden (vgl. Abb. 7). Das Datenblatt ([2, S. 6]) belegt die Messungen und bezeichnet die Messausreisser als "instabile Ausgabe" für maximal 5 ms alle 40 ms. Mit 50 Werten erhöht sich die Filterwirkung, es entsteht jedoch ein Delay von 10 ms. Mit 10 Werten ist die Filterwirkung zu gering.
Zusammenfassung und Ausblick
- Zusammenfassung der Kapitel 1-4
- Diskussion der Ergebnisse
- Ausblick
- Selbstreflexion/Lessons learned
Ergebnisvideo
Binden Sie hier Ihr Ergebnisvideo ein.
Anleitung: Videos im Wiki einbinden
Lernzielkrontrolle
Beantworten Sie in Ihrem Artikel die Lernzielkontrollfragen.
Lernzielkontrollfragen |
|
Literatur
Zitieren Sie nach DIN ISO 690:2013-10.
Anhang
- Datenblätter
- Simulink-Modell
- Originaldateien (PAP, Schaltplan,... )
→ zurück zum Hauptartikel: BSE Angewandte Informatik SoSe24 | Hausarbeit SoSe24
- ↑ https://wiki.hshl.de/wiki/index.php/BSE_Angewandte_Informatik_-_SoSe24, abgerufen am 14.07.2024