RFID-KIT mit Mifare RC522 Empfänger: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
(Die Seite wurde neu angelegt: „Kategorie:Arduino thumb|rigth|450px|Abb. 1: RFID-KIT mit Mifare RC522 Empfänger {|class="wikitable" |- | '''Autor:''' || Niklas Reeker |- | '''Studiengang:''' || Business and Systems Engineering |- | '''Modul:''' || BSE-M-2-1.03, Hausarbeit in Angewandte Informatik gehalten von Prof. Dr.-Ing. Schneider |- | '''Semester:''' || Sommersemester 2024 |- | '''Abgabetermi…“)
 
Keine Bearbeitungszusammenfassung
Zeile 15: Zeile 15:


== Einführung ==
== Einführung ==
In diesem Artikel wird die Verwendung des RFID-KITs mit einem Mifare RC522 Empfänger näher erläutert. RFID (Radio Frequency Identification) ist eine Technologie zur drahtlosen Identifikation und Authentifizierung von Objekten mittels Radiowellen. Das Mifare RC522 Modul ermöglicht es, RFID-Tags zu lesen und zu schreiben, und wird häufig in Zugangskontrollsystemen, Bibliothekssystemen und bei der Verfolgung von Gegenständen eingesetzt.
Der Artikel gibt einen Überblick über die grundlegenden Komponenten des RFID-KITs, erklärt die Funktionsweise des Mifare RC522 Empfängers und beschreibt detailliert, wie das Modul in verschiedenen Projekten integriert und programmiert werden kann. Ziel ist es, dem Leser dieses Artikels eine umfassende Anleitung zur erfolgreichen Implementierung von RFID-Lösungen mit dem Mifare RC522 zu bieten.
=== Aufgabenstellung ===
=== Aufgabenstellung ===
Lesen Sie mit dem RFID Lesegerät die Daten der RFID Karte und des RFID-Tags aus.
Lesen Sie mit dem RFID Lesegerät die Daten der RFID Karte und des RFID-Tags aus.

Version vom 14. Juli 2024, 10:44 Uhr

Abb. 1: RFID-KIT mit Mifare RC522 Empfänger
Autor: Niklas Reeker
Studiengang: Business and Systems Engineering
Modul: BSE-M-2-1.03, Hausarbeit in Angewandte Informatik gehalten von Prof. Dr.-Ing. Schneider
Semester: Sommersemester 2024
Abgabetermin: 28.07.2024

Einführung

In diesem Artikel wird die Verwendung des RFID-KITs mit einem Mifare RC522 Empfänger näher erläutert. RFID (Radio Frequency Identification) ist eine Technologie zur drahtlosen Identifikation und Authentifizierung von Objekten mittels Radiowellen. Das Mifare RC522 Modul ermöglicht es, RFID-Tags zu lesen und zu schreiben, und wird häufig in Zugangskontrollsystemen, Bibliothekssystemen und bei der Verfolgung von Gegenständen eingesetzt.

Der Artikel gibt einen Überblick über die grundlegenden Komponenten des RFID-KITs, erklärt die Funktionsweise des Mifare RC522 Empfängers und beschreibt detailliert, wie das Modul in verschiedenen Projekten integriert und programmiert werden kann. Ziel ist es, dem Leser dieses Artikels eine umfassende Anleitung zur erfolgreichen Implementierung von RFID-Lösungen mit dem Mifare RC522 zu bieten.


Aufgabenstellung

Lesen Sie mit dem RFID Lesegerät die Daten der RFID Karte und des RFID-Tags aus.

  • Thema/Fragestellung: Messung der Entfernung mit dem Sensor Sharp GP2-0430K
  • Hypothese: Die Entfernung lässt sich im Bereich von 4 cm bis 50 cm fehlerfrei messen.
  • Einordnung in den Lehrplan

Projektbeschreibung

Tabelle 2: Materialliste
# Anzahl Material
1 1 PC mit MATLAB/Simulink R2022b
2 1 Sensor Sharp GP2-0430K
3 1 Arduino Uno R3
4 1 Streckbrett
5 5 Jumper Kabel, männlich/männlich, 20 cm

Beschreibung Funktionsweise der verwendeten Hard- und Software

  • Arduino Uno R3
  • Sensor Sharp GP2-0430K
  • Simulink R2022b

Technische Daten

Messbereich 0 ° .. 180 °
PWM-Modulation analog
PWM-Pulszykluszeit 20 ms
PWM-Pulsweite 500-2400 ms
Versorgungsspannung 4.0 V .. 7.2 V
Versorgungsstrom 20 mA
Geschwingigkeit 0,12 s/60 ° (@4,8 V, lastfrei)
Drehmoment 1,5 kg/cm (@4,8 V)
Gewicht 9 g
Getriebe Kunststtoff
Arbeitstemperatur 0 °C .. +55 °C
Abmessungen 22,2 mm x 11,8 mm x 31 mm

Pinbelegung

Pin Belegung Signal
1 Versorgungsspannung VCC 5 V
2 Triggereingang TTL-Pegel
3 Echo, Ausgang Messergebnis TTL-Pegel
4 Masse (GND) 0 V

Versuchsaufbau und Durchführung

Versuchsaufbau

Abb. 2: Schaltplan
Abb. 3: Anschlussplan
Abb. 4: Foto des Versuchsaufbaus

Der Versuchsaufbau wird durch einen Schaltplan (Abb. 2), Anschlussplan (Abb. 3) und Foto des Aufbaus (Abb. 4) dokumentiert.

Versuchsdurchführung

Abb. 5: Simulink-Modell

Das Modell zur Datenverarbeitung wurde gemäß Abb. 5 in Simulink aufgebaut. Die Messdaten wurden aufgezeichnet. Ein Video der Versuchsdurchführung findet sich hier.

Modelleinstellungen: Arduino Uno, Solver: Fixed-step, discrete, Abtastrate: 0,001 s

Versuchsbeobachtung

Abb. 6: Darstellung des Rohsignals des IR-Entfernungssensors (rote Kurve)
Abb. 7: Darstellung von dynamischen Messwerten des IR-Entfernungssensors

Das Signal des Sensors weist alle 40 ms systematische Ausreisser auf (vgl. Abb. 6, rote Kurve).

Auswertung

Die Messhypothese wurde verworfen. Der Sensor weist systematische Messwertausreisser auf.

Die Ausreisser lassen sich mit einem Signalfilter eliminieren. Hierzu eignet sich ein Rangordnungsfilter (z. B. Median-Filter). Das Filter wird hierzu auf eine Fensterbreite von 30 Werten eingestellt. Das zufriedenstellende Filterergebnis für statische Werte zeigt Abb. 6 als blaue Kurve. Es konnte mit dynamische Werten verifiziert werden (vgl. Abb. 7). Das Datenblatt ([2, S. 6]) belegt die Messungen und bezeichnet die Messausreisser als "instabile Ausgabe" für maximal 5 ms alle 40 ms. Mit 50 Werten erhöht sich die Filterwirkung, es entsteht jedoch ein Delay von 10 ms. Mit 10 Werten ist die Filterwirkung zu gering.

Zusammenfassung und Ausblick

  • Zusammenfassung der Kapitel 1-4
  • Diskussion der Ergebnisse
  • Ausblick
  • Selbstreflexion/Lessons learned

Ergebnisvideo

Binden Sie hier Ihr Ergebnisvideo ein.

Anleitung: Videos im Wiki einbinden

Lernzielkrontrolle

Beantworten Sie in Ihrem Artikel die Lernzielkontrollfragen.

Literatur

Zitieren Sie nach DIN ISO 690:2013-10.

Anhang

  • Datenblätter
  • Simulink-Modell
  • Originaldateien (PAP, Schaltplan,... )

→ zurück zum Hauptartikel: BSE Angewandte Informatik SoSe24 | Hausarbeit SoSe24