Ultraschall Abstandssensor HC-SR04: Unterschied zwischen den Versionen
Zeile 119: | Zeile 119: | ||
== Prinziperklärung Ultraschallmessung mit dem HC-SR04== | == Prinziperklärung Ultraschallmessung mit dem HC-SR04== | ||
Das Prinzip eines Ultraschallsensormoduls stellt ein Laufzeitverfahren dar (Abb. | Das Prinzip eines Ultraschallsensormoduls stellt ein Laufzeitverfahren dar (Abb. 9). Der HC-SR04 enthält ein Ultraschallsender, welches einen Ultraschallimpuls aussendet. Dieses Signal wird bei einem Kontakt auf einen Widerstand (physisches Objekt) reflektiert, ähnlich wie ein Echo. Wenn das reflektierte Signale zurückkommt, wird es vom (HC-SR04 rechten) Sensor wieder aufgenommen. Um die Distanz zu dem Objekt zu bestimmen, wird die Zeit vom ausgehenden Signal bis zum Wiedereintreffen des Echos gemessen. Der Microcontroller misst die Zeit von der ausgesandten steigenden Flanke bis zur wiedereintreffenden steigenden Flanke vom Sensor, der das Signal empfängt. Durch die Schallgeschwindigkeit und die verstrichene Zeit kann durch eine Berechnung die Distanz ermittelt werden. Da Schallwellen die Strecke einmal hin und wieder zurück zurücklegen müssen, ist die gemessene Zeit noch zu halbieren. [https://cdn-reichelt.de/documents/datenblatt/B400/ULTRASCHALL%20SENSOR.pdf] | ||
[[Datei:Prinzipien der Entfernungsmessung.jpg|300px|thumb|links|Abbildung 9: Timing des HC-SR04 <ref name = 'Datenblatt'/> ]]<br><br> | [[Datei:Prinzipien der Entfernungsmessung.jpg|300px|thumb|links|Abbildung 9: Timing des HC-SR04 <ref name = 'Datenblatt'/> ]]<br><br> |
Version vom 16. Januar 2021, 23:05 Uhr
Autor: Lukas Honerlage
Betreuer: Prof. Schneider
Einleitung
In dem Projekt wird ein Ultraschall-Sensormodul (HC-SR04) in Betrieb genommen. Es wird das Arbeitsprinzip von einem HC-SR04 erläutert. Ebenfalls wird beschrieben, wie eine Messung mit Ultraschall funktioniert und von welchen wesentlichen Faktoren diese abhängt. Die Inbetriebnahme wird mit den Arduino Board UNO durchgeführt. Zur Veranschaulichung wird ein Ausschnitt des seriellen Monitors gezeigt und erläutert, welche Rohsignale (RAW) vom HC-SR04 an den Arduino gesendet werden. Des Weiteren wird die softwareseitige Verarbeitung der Signale erklärt.
Technische Übersicht
Ultraschall Abstandssensor HC-SR04
Eigenschaft | Daten [2] |
---|---|
Spannungsversorgung |
VCC 5 V |
Stromaufnahme |
15 mA |
Messbereich | 3 cm bis ca. 400 cm |
Messintervall | 0,3 cm |
Messung pro Sekunde | max. 50 |
Messfrequenz |
40 Hz |
Messkegel |
ca. 15° |
Abmessung (l,b,h) |
45 mm x 25 mm x 20 mm |
Pin | Funktion [2] |
---|---|
1. VCC-Pin |
5 V |
2. Trigger-Pin |
TTL-Pegel |
3. Echo-Pin | Messergebnis, TTL-Pegel |
4. GND | 0 V |
Hardwareaufbau
Schaltplan und Steckplatine
-
Abbildung 2: Anschlussbild des Abstandssensor HC-SR04
-
Abbildung 3: Anschlussplan des Abstandssensor HC-SR04
Der Hardwareaufbau besteht aus dem Anschluss des Ultrasschallsensors an den Arduino UNO. Der HC-SR04 benötigt vier Anschlüsse. Es werden VCC und GND für die Versorgungsspannung benötigt. Die anderen beiden sind für die Trigger Impulse und das Echo Signal. Der Trigger-Pin wird auf Pin 12 am Arduino angeschlossen und wird in der Software als Output-Pin deklariert. Der Echo-Pin wird auf Pin 10 am Arduino angeschlossen und liefert das Messergebnis vom Ultraschallsensors. In der Software wird das Signal als Input-Pin deklariert.
Equipment
Verwendete Software
Für die Erarbeitung der oben genannten Aufgabenstellungen wurden folgende Softwares verwendet:
- Arduino Software IDE 1.8.13
- MATLAB/Simulink 2020b
- Fritzing
- TortoiseSVN
Verwendete Komponente
Für die Erarbeitung der oben genannten Aufgabenstellungen wurden folgende Komponenten eingesetzt:
- Ultraschall Abstandssensor: HC-SR04
- LCD Display mit I2C Anschluss
- Arduino UNO R3 (AZ-Delivery Edition)
Messkette
Die Analyse der Messkette fängt mit der Betrachtung des Sensors an. Die unten stehenden Abbildungen veranschaulichen den Aufbau und die einzelnen Bauteile des HC-SR04. Die genaue Bedeutung dieser wird im Nachgang genauer erklärt. Die Messkette des HC-SR04 dient zur Auswertung des Sensors. In der Abbildung 4 ist die Rückseite der Platine mit den beschrifteten Bauteilen abgebildet.
Schaltkreis des HC-SR04
Der Sensor besteht aus drei verschieden Teilen, die im Zusammenspiel eine Ultraschallmessung ermöglichen. Die Recheneinheit stellt der Mikroprozessor dar, welcher mit dem Sender und dem Empfänger verbunden ist. Ebenfalls befinden sich auf der Platine die Board Chips für die interne Verarbeitung der Signale, Verstärker und Filterschaltungen.
Mikrocontroller U1
Der EM78P153S 8-Bit-Mikroprozessor auf dem Board hat verschiedene Aufgaben. Einerseits stellt er die Schnittstelle dar, in dieser Arbeit die Verbindung zum Arduino über die Trigger- und Echo-Pins. Andererseits koordiniert er das Timing eines gegenphasigen Burstsignals, um einen Ping zu erzeugen und den Empfänger zeitweise auszuschalten, um Fehler zu vermeiden. Ebenfalls wird hierüber das vorverarbeitete Signal vom Empfänger empfangen.
Sender U3
Der Sender U3 verarbeitet die eingehenden Signale vom Mikroprozessor und verstärkt das Signal, um den Ultraschallsender in Schwingung zu versetzen. Der Chip enthält an dem Sensor, mit dem die Messung durchgeführt wird, keine Beschriftung. Hierbei ist anzunehmen, dass es sich analog zu der Abbildung, um den Chip RCWL-9206 handelt oder um einen funktionsgleichen anderen.
Empfänger U2
Der Empfänger Chip U2 ist auf dem HC-SR04 und in der Abbildung nicht zuerkennen, daher kann zu diesem keine genaue Annahme getroffen werden. Das Empfangen erfolgt über vier Operationsverstärker. Die Kondensatoren C1, C3 und C4 sorgen sich um die Wechselstromkopplung zwischen den drei Stufen. Die erste Stufe (U2D, R1 und R2) ist ein invertierender Verstärker.[5] Die zweite Stufe (U2C, C2, C3 und R5) ist ein Bandpassfilter.[6] Bei der dritten Stufe handelt es sich ebenfalls um einen Verstärker. Die vierte Operationsverstärkerstufe ist ein Hysteresekomparator mit variabler Schwelle und Ausgangsschalter.[7] [5]
Primer Sensoren
Auf dem HC-SR04 befinden sich zwei Sensoren, die zum einen ein Ultraschallsignal erzeugen können und zum anderen diese Ultraschallwellen wieder aufnehmen können. Der linke Sensor auf dem HC-SR04 sendet die Ultraschallimpulse aus. Der rechte Sensor empfängt diese und wandelt sie in ein elektrisches Signal um. Die genaue Funktionsweise der beiden Sensoren wird im weiteren Verlauf genauer definiert.
Der Aufbau des Sensors ist in Abbildung 6 dargestellt. Der Sensor enthält ein Metall-Gehäuse mit einem Drahtgeflecht gegen den äußeren Schutz. Im Inneren des Sensors befindet sich ein Mehrfachvibrator, der unter Schwingung ein Ultraschallsignal erzeugen kann. Ebenso kann er durch reflektierende Ultraschallwellen in Schwingung versetzt werden und einen elektrischen Strom erzeugen. Der Mehrfachvibrator besteht aus einer Metallplatte und einer piezoelektrischen Keramikplatte. Jeder dieser Platten ist mit einem Pin verbunden. Wenn an den Pins Strom angeschlossen ist, entsteht eine mechanische Deformation zwischen den Platten, die in diesem Fall Ultraschallimpulse erzeugen. Um dieses Signal gebündelt auszustoßen, befindet sich auf der Metallplatte ein konisches Metallhorn, welche diesen Prozess maßgeblich unterstützt. Der Effekt tritt umgekehrt bei dem Empfangen der Ultraschallsignale auf. Das Horn nimmt die Signale auf und bringt die Platten in eine leichte Schwingung. Durch die Schwingung entsteht in diesem Fall ein messbarer Strom. Auf der Platine befinden sich zwei baugleiche Sensoren. Diese werden benötigt, da bei der Erzeugung eines Ultraschallsignals Strom hinzugeführt wird, um ein Signal zu senden. Das reflektierende Signal erzeugt nur einen sehr kleinen Strom. Um dieses Signal zu verarbeiten, muss dieses wie oben beschrieben verstärkt und gefiltert werden. Die beiden Schaltkreise sind in diesem Fall getrennt. [8]
Prinziperklärung Ultraschallmessung mit dem HC-SR04
Das Prinzip eines Ultraschallsensormoduls stellt ein Laufzeitverfahren dar (Abb. 9). Der HC-SR04 enthält ein Ultraschallsender, welches einen Ultraschallimpuls aussendet. Dieses Signal wird bei einem Kontakt auf einen Widerstand (physisches Objekt) reflektiert, ähnlich wie ein Echo. Wenn das reflektierte Signale zurückkommt, wird es vom (HC-SR04 rechten) Sensor wieder aufgenommen. Um die Distanz zu dem Objekt zu bestimmen, wird die Zeit vom ausgehenden Signal bis zum Wiedereintreffen des Echos gemessen. Der Microcontroller misst die Zeit von der ausgesandten steigenden Flanke bis zur wiedereintreffenden steigenden Flanke vom Sensor, der das Signal empfängt. Durch die Schallgeschwindigkeit und die verstrichene Zeit kann durch eine Berechnung die Distanz ermittelt werden. Da Schallwellen die Strecke einmal hin und wieder zurück zurücklegen müssen, ist die gemessene Zeit noch zu halbieren. [1]
Signale des HC-SR04 des HC-SR04
Um eine Messung durchzuführen, muss der Trigger-Eingang für 10µs (0,00001s) auf High gesetzt werden. Im Anschluss sendet der Sensor acht kurze Rechteckwellen von 40kHz in ungefähr 200µs (0,0002s). Direkt danach wird der Echo Pin auf High gesetzt. Das Signal bleibt solange auf High bis das reflektierende Signal wieder empfangen wird. Wenn kein reflektierendes Signal zurückkommt, wird nach 170ms (0,17s) der Pin zurück auf Low gesetzt. Die Messung wird als gescheitert betrachtet.[2]
Signale des HC-SR04 im Oszilloskop
Im Oszilloskop können die Signale die vom HC-SR04 gesendet werden sichtbar gemacht werden. Hier ist schön zu erkennen, wie am Anfang das Signal kurz auf High gesetzt wird. Im Anschluss erfolgt dann der Burst von 8 x 40 kHz-Impulsen. Ebenfalls ist am Echo Ausgang zu sehen, das nach den 8 Impulsen der Ausgang auf High gesetzt wird. Wenn das erste Signal zurückkommt fällt die Flanke wieder. Dieses Prinzip findet beim Konstanten Messen in einer Schleife statt.[3]
Softwarearchitektur
Das auslesen des Sensors ist nicht sehr umfangreich, da ein großer Teil vom Sensor direkt übernommen wird. Es muss lediglich festgelegt werden, wann das Signal ausgesendet wird. Das aussenden geschieht Digital, indem der Trigger-Pin für 5ms auf High gesetzt wird und danach wird auf Low. Das auslesen des Echo Pin erfolgt ebenfalls Digital. In der Arduino IDE gibt es bereits eine Funktion, in der die Zeit gemessen wird wie lange ein Pin auf High gesetzt ist. Durch diese Funktion wird die Zeit des gemessen wie lange der Echo-Pin auf High ist. Dieser Wert wird im Anschluss umgerechnet in die Distanz in cm. Um Messunsicherheit auszuschließen, wird der Wert immer auf eine ganze Zahl gerundet. Das errechnete Ergebnis wird im Anschluss in dem Seriellen Monitor der Arduino IDE ausgegeben.
Dieser Ablauf erfolgt dauerhaft in einer Schleife.
Signalverarbeitung
Messungen am Empfänger Sensor
Um einen Rückschluss darüber ziehen zu können, ob es Analog möglich ist über den eingehenden Strom eine Distanz zu ermitteln, wurde an den HC-SR04 an den Pins des Ultraschallempfänger jeweils ein Kabel angelötet. Aus den Ermittelten Werten kann festgestellt werden, dass in kurzer Distanz noch ein Unterschied festgestellt werden kann, diese Werte schwanken aber trotz gleicher Distanz. Eine Analoge Entfernungsmessung ist damit nicht möglich.
Distanz in cm | Spannung in mA |
---|---|
5 |
0,1-0,3 |
10 |
0,1-0,2 |
50 |
0,1-0,2 |
100 |
0,1 |
150 |
0,1 |
200 |
0,1 |
250 |
0,1 |
Analog-Digital-Umsetzer
Um trotzdem eine Messung durchführen zu können, werden die niedrige Spannungen Verstärkt und gefilterte. Im dem Mikroprozessor EM78P153 wird dieses Signal im Anschluss in ein Digitales 5 Volt High oder Low Signal umgewandte. Was über den Trigger-Pin ausgelesen werden kann.
Bussystem
Der HC-SR04 enthält kein Bussystem.
Umwelteinflüsse auf die Messung
Um Schallgeschwindigkeit zu berechnen ist es wichtig, sich mit den äußeren Gegebenheiten auseinander zu setzten. Die Schallgeschwindigkeit ist abhängig vom der Elastizität, Dichte, Temperatur und der Windgeschwindigkeit. Um eine Exakte Messungen bei Unterschiedlichen Umweltbedingungen durchzuführen muss konstant die Temperatur, die höhe vom Meeresspiegel, die Luftfeuchte und die Windgeschwindigkeit gemessen werden. In der Atmosphäre nimmt die Schallgeschwindigkeit mit der Höhe ab. Mit diesen Werten kann die Momentane Schallgeschwindigkeit Berechnet werden, unter Berücksichtigung der äußeren Umwelteinflüsse.
Bei dem HC-SR04 wird keine Messung der äußeren Einflüsse durchgeführt. Alle Versuche sind in einem geschlossenen Raum durchgeführt so dass mit einer Schallgeschwindigkeit von 343,5 m/s gerechnet wird.
[12]
Übersicht der Schallgeschwindigkeit bei Temperatur
Temperatur °C | Temperatur K | Schallgeschwindigkeit m/s | Schallgeschwindigkeit km/h |
---|---|---|---|
-50 |
223,15 |
299,63 |
1079 |
-40 |
233,15 |
306,27 |
1103 |
-30 |
243,15 |
312,77 |
1126 |
-20 |
253,15 |
319,09 |
1149 |
-10 |
263,15 |
325,35 |
1171 |
0 |
273,15 |
331,50 |
1193 |
10 |
283,15 |
337,54 |
1215 |
20 |
293,15 |
343,46 |
1236 |
30 |
303,15 |
349,29 |
1257 |
40 |
313,15 |
254,94 |
1278 |
50 |
323,15 |
360,57 |
1298 |
Die Schallgeschwindigkeit bei Trockener Luft und einer Temperatur von 20°C betragt 343,5 m/s (1236 km/h).[12] Bei der Programmierung des Sensors wird ein Schallgeschwindigkeit von 343,5 m/s als Grundlage zum bestimmen der Entfernung genommen.
Mathematisches Hilfsmittel
Lautstärke berechnen
Die erzeugte Lautstärke wird direkt vom Sensor übernommen und kann von außen nicht beeinflusst werden.
Bei dem Ultraschallsenders lässt sich die Lautstärke mit der Formel des Schalldruckpegel berechnen.
(S.P.L.) =Sound pressure level
= Schalldruck des Sensors
= Referenzschalldruck
Die Laustärke des Sensors beträgt auf dem HC-SR04 100db.
Nach 0,5 Meter sind es nur noch 80db.
[4]
Berechnung der Schallgeschwindigkeit
Um eine exakte Messung der Schallgeschwindigkeit durchzuführen müssen alle Umwelteinflüsse die sich auf die Geschwindigkeit der Schalls Auswirken betrachtet werden. Die wesentliche Geschwindigkeit hängt von der [13]
Für trockene Luft Molmasse in Meereshöhe
Für das zweiatomige Gas Sauerstoff
ist die universelle Gaskonstante in Joule pro Kelvin mal Mol
ist die Temperatur in Kelvin bei 20°C
Umgang mit der Messunsicherheit
Um die Umrechnung einfach zu Gestaltung gibt es eine Näherungs Formel, die mit einer Genauigkeit von 99,8% den Messbereich von -20°C bis 40°C abbildet. Da bei in unserm Sensor nur auf cm runden ist die Messunsicherheit von 0,2% zu vernachlässigen. Was nicht zu vernachlässigen ist, ist die Temperatur. Bei 0°C bis +20°C entsteht ein Messunsicherheit von 3,49% von -20°C bis 20°C entsteht sogar ein Messunsicherheit von 6,99%. Bei genauen Messung bei großen Temperatur Schwankungen sollten eine Temperatur Messung in die Berechnung mit einfließen. Untenstehende Tabelle verdeutlicht die Laufzeit bei unterschiedlicher Temperatur. [13]
Distanz zum Objekt cm | Laufzeit in ms bei 20°C | Laufzeit in ms bei 0°C | Laufzeit in ms bei -20°C |
---|---|---|---|
2 |
0,1164 |
0,1206 |
0,1251 |
5 |
0,2911 |
0,3016 |
0,3129 |
10 |
0,5822 |
0,6033 |
0,6259 |
25 |
1,4556 |
1,5082 |
1,5649 |
50 |
2,9112 |
3,0165 |
3,1289 |
100 |
5,8224 |
6,0331 |
6,2597 |
150 |
8,7336 |
9,0497 |
9,3896 |
200 |
11,6448 |
12,0663 |
12,5195 |
250 |
14,5560 |
15,0829 |
15,6494 |
300 |
17,4672 |
18,0995 |
18,7793 |
Bewertung des Sensors
Vorteile
Die Vorteile des Sensors sind, dass er für unter 5 Euro zu bekommen ist. Für den Preis bietet der Sensor eine gute Möglichkeit, den Abstand von 3 cm bis 250cm auf 1 cm genau zu bestimmen. Ebenfalls liegt der Vorteil darin, dass der Sensor einen großenteil des Messens selbständig übernimmt. Hierdurch ist er Ressourcen sparend beim Auslesen des Sensors.
Nachteile
Die Nachteile des Sensors sind das der Sensor keine Temperatur Messung mit inbegriffen hat, der den Umweltbedingen entgegenwirkt. Des weiteren ist nur eine Messung von 3cm bis 250 cm möglich. Es ist nicht möglich eine Entfernung auf mm genau zumessen. Ebenfalls ist die Bauweise des Sensors so das Sender/Empfänger und die Interne Verarbeitung sich auf einer Platine befinden. Durch diese Bauweise ist der Sensor sehr groß.
Alternative
Bei den Ultraschallsensoren gibt es noch weiter Unterschiede. Spezifisch dem Anwendungsfall muss betrachtetet werden, ob die Eigenschafen des Sensors ausreichen. Der AJ-SR04M kann z.B. eine längere Distanz messen aber erst ab einer Reichweite von 0,25 Metern. Ebenfalls spielt die Bauform, Langlebigkeit und Preis eine Wichtige Rolle bei der Auswahl des richtigen Sensors.
AJ-SR04M
Sensor | Spezifikationen[5] |
---|---|
Technologie |
Ultraschall |
Mindestbereich (m) |
0,25m |
Maximale Reichweite (m) |
5m |
Genauigkeit |
+/- 1% |
Typische Aktualisierungsrate (Hz) |
40 kHz |
Eingangsspannung | 5,0V |
Max. Dauerstromverbrauch (mA) |
30,0mA |
Schnittstellen |
Digital |
Um die Entfernung zu messen gibt es noch eine ganze Reihe an Alternativen. Es besteht z.B. die Möglichkeit die Entfernung mit LED, LiDAR oder VCSEL Technologie zu messen. Ebenfalls muss hier der Anwendungsfall betrachtet werden da die Sensoren sehr Unterschiedliche Eigenschaften besitzen.
Sharp GP2Y0A21YK0F
Sensor | Spezifikationen[6] |
---|---|
Technologie |
LED |
Mindestbereich (m) |
0,10m |
Maximale Reichweite (m) |
0,80m |
Genauigkeit |
+/- 1% |
Typische Aktualisierungsrate (Hz) |
26Hz |
Wellenlänge (Licht) (nm) |
850 nm |
Eingangsspannung | 4,5V - 5,5V |
Max. Dauerstromverbrauch (mA) |
30,0mA |
Schnittstellen |
Analog |
MINI-S
Sensor | Spezifikationen[7] |
---|---|
Technologie |
LIDAR |
Mindestbereich (m) |
0,1m |
Maximale Reichweite (m) |
12m |
Genauigkeit |
+/- 1% |
Typische Aktualisierungsrate (Hz) |
26Hz |
Wellenlänge (Licht) (nm) |
850 nm |
Eingangsspannung | 5,0V |
Max. Dauerstromverbrauch (mA) |
30,0mA |
Schnittstellen |
Analog |
VL6180X
Sensor | Spezifikationen[8] |
---|---|
Technologie |
VCSEL |
Mindestbereich (m) |
0,1m |
Maximale Reichweite (m) |
2m |
Auflösung (mm) |
1mm |
Genauigkeit |
+/- 1% |
Typische Aktualisierungsrate (Hz) |
10Hz |
Wellenlänge (Licht) (nm) |
850 nm |
Eingangsspannung | 5,0V |
Max. Dauerstromverbrauch (mA) |
15,0mA |
Schnittstellen |
IC2 |
Zusammenfassung
Zusammenfassend ergibt der Sensor ein gutes Gesamtpaket ab. Er kann zuverlässig Ultraschallwellen auf eine Entfernung von 3-400 cm senden und Empfangen. Auf die Entfernung Reflektierenden Schallwellen sind stark genug den Ultraschallempfänger in Schwingung zu bringen so das ein messbares Signal entsteht. Durch die Interne Signalverarbeitung auf dem Sensor ist Sensor sehr einfach einzusetzen. Es Muss lediglich ein Startimpuls von 3,3V - 5V gesendet werden und die Zeit gemessen werden, wie Langer sich der EchoPin auf High befindet. Hierrüber kann dann durch eine Einfache Umrechnung die Distanz berechnet werden. Der Umgang mit den Messfehler muss bei diesem Sensor extern betrachtet werden. Auftretende Fehler können mit einer Temperatur Messung und diesen Wert in der Formel ergänzt behoben werden.
Lernerfolg
Bei dieser Ausarbeitung des HC-SR04 Abstandssensor konnte ein tiefer Eindruck über das Prinzip der Ultraschallmessung erlangt werden. Angefangen von den Hardwarekomponenten und deren Bedeutung in der Ultraschall Erzeugung und sowie die Reflektierten Signale wieder aufzufangen und diese in eine Messbare Elektronische Größe umzuwandeln. Des weitern wurde der Umgang von Fritzing bei der Erstellung des Schaltbildes und Anschlussplan vertieft. Ebenfalls konnte ein Eindruck über die Physikalischen Auswirkungen sowie die Mathematische Bedeutung bei der Berechnung der Schallgeschwindigkeit erlangt werden. Durch die eigene Programmierung des Sensors konnte das erarbeite Verständnis in der Praxis angewendet werden. Hierdurch konnte erlernt werden wie ein Abstand Sensor mit einem Microcontroller in betreib genommen werden kann. Ebenfalls wurde gelernt wie mit dem Microcontroller eine Flanke über die Zeit ausgelesen werden kann. Ebenfalls wurde auf den Umgang mit Messunsicherheiten eingegangen und festgestellt, wie man diese behebt. Zum Schluss wurden noch Alternativen betrachtet mit den ebenfalls eine Distanzmessung möglich ist.
YouTube Video
Zur Veranschaulichung wurde wurde ein Video hochgeladen. In dem Video ist eine Messung vom Ultraschallsensor zusehen, die Ausgabe erfolgt auf einem LCD Display und auf dem Seriellen Monitor am Laptop. Der Arduino mit dem Sensor und dem Serielleren Display kann auch ein einer externen Spannungsquelle angeschlossen werden wie z.B. eine Powerbank. Dies hat den Vorteil, dass eine das unabhängig vom Laptop erfolgen kann. Ebenfalls wurde zum Schutz außer Einflüsse ein Gehäuse für die einzelnen Bauteile erstellt. Video des HC-SR04
Schwierigkeitsgrad
Quellenverzeichnis
- ↑ https://www.banggood.com/3Pcs-HC-SR04-Ultrasonic-Module-with-RGB-Light-Distance-Sensor-Obstacle-Avoidance-Sensor-Smart-Car-Robot-Geekcreit-for-Arduino-products-that-work-with-official-Arduino-boards-p-1608924.html?rmmds=detail-topright-recommendation1&cur_warehouse=CN
- ↑ 2,0 2,1 Joy-IT.: Ultrasonic Distance Sensor. 2017. Online im Internet: https://cdn-reichelt.de/documents/datenblatt/A300/SEN-US01-DATASHEET.pdf Abruf: 23.12.2020
- ↑ https://www.banggood.com/Wholesale-Geekcreit-Ultrasonic-Module-HC-SR04-Distance-Measuring-Ranging-Transducers-Sensor-DC-5V-2-450cm-p-40313.html?akmClientCountry=America&&utm_source=google&utm_medium=cpc_ods&utm_campaign=arvin-cam-sds-view-telscope-content-pc&utm_content=arvin&gclid=Cj0KCQiA2af-BRDzARIsAIVQUOdUqObSv6DEN3AAWBKRlD20KRye4_nSknpvvVbfCFtrdvdgr818smgaAuVREALw_wcB&cur_warehouse=UK
- ↑ http://www.pcserviceselectronics.co.uk/arduino/Ultrasonic/HC-SR04-cct.pdf
- ↑ 5,0 5,1 Federau, Joachim: Operationsverstarker Lehr- und Arbeitsbuch zu angewandten Grundschaltungen. Wiesbaden: Vieweg + Teubner, 4. Auflage 2006. ISBN 978-3-8348-0183-8. S.44ff,S.63ff
- ↑ Shenoi, Belle A.: Introduction to digital signal processing and filter design/ B.A. Shenoi. Hoboken, NJ: Wiley, 1. Auflage 2005. ISBN 9780471464822.S.150ff
- ↑ Ehrhardt, Dietmar: Verstärkertechnik. Braunschweig/Wiesbaden: Vieweg+Teubner Verlag, 1. Auflage 1992. ISBN 978-3-322-83026-5. S.170ff
- ↑ 8,0 8,1 8,2 Murata Manufacturing Co., Ltd.: Application Manual. 2013. Online im Internet: https://cdn-reichelt.de/documents/datenblatt/B400/ULTRASCHALL%20SENSOR.pdf Abruf: 23.12.2020
- ↑ https://www.reichelt.de/ultraschallsender-16mm-h-12mm-ust-40t-p22188.html?&nbc=1&trstct=lsbght_sldr
- ↑ https://wolles-elektronikkiste.de/hc-sr04-und-jsn-sr04t-2-0-abstandssensoren
- ↑ http://www.pcserviceselectronics.co.uk/arduino/Ultrasonic/
- ↑ 12,0 12,1 Douglas, Giancoli: Physik Lehr- und Übungsbuch. München: Pearson Studium ein Imprint von Pearson Deutschland, 3. Auflage 2009.
- ↑ 13,0 13,1 Owen, Cramer: The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity. In: The Journal of the Acoustical Society of America. Bd. 93(5), S. 2510, 1993.ff
- ↑ https://www.amazon.de/Ultraschallwellen-Entfernungs-Messbrett-Ranging-Wasserdichtem/dp/B076SWF5FV/ref=sr_1_1_sspa?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=JSN-SR04T+Wasserdichtes+Ultrasonic+Ultraschall+Modul+Entfernungsmesser+AJ-SR04M&qid=1607934753&sr=8-1-spons&psc=1&smid=A5QX2SUPA7LK7&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEzOEtKTVBRWDFXNTcmZW5jcnlwdGVkSWQ9QTA1NTU0NTIzU0c4VTVERU1GREFZJmVuY3J5cHRlZEFkSWQ9QTAwNjc1NzZYRlJSSFFYOEY4RkMmd2lkZ2V0TmFtZT1zcF9hdGYmYWN0aW9uPWNsaWNrUmVkaXJlY3QmZG9Ob3RMb2dDbGljaz10cnVl
- ↑ https://www.reichelt.de/index.html?ACTION=446&LA=3&nbc=1&q=gp2-1080k
- ↑ https://www.reichelt.de/benewake-tfmini-s-lidar-12m-tf-mini-s-p287742.html?&trstct=pos_1&nbc=1
- ↑ https:https://www.distrelec.de/de/tof-distanzmessgeraet-vl6180x-5v-adafruit-3316/p/30129217?channel=b2c&price_gs=14.4536&source=googleps&ext_cid=shgooaqdede-na&kw=%7Bkeyword%7D&&s_kwcid=AL!8921!3!474063074157!!!g!923944572423!&s_kwcid=AL!8921!3!474063074157!!!g!923944572423!&gclid=CjwKCAiAlNf-BRB_EiwA2osbxfaheMtmFWuSdwb4ZWtsX4bXe5vNK3-nBIgD5-tEjEnELvDMPUxk1hoCkz8QAvD_BwE
→ zurück zum Hauptartikel: Sensortechnik WS 20/21