Augmented Reality: Wörterbuch: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Zeile 37: Zeile 37:
bild_bw_canny = edge(bild_bw, 'Canny'); % Kantenbild durch Canny   
bild_bw_canny = edge(bild_bw, 'Canny'); % Kantenbild durch Canny   
</source>
</source>


=== 3.Schritt: Wichtige Region finden ===
=== 3.Schritt: Wichtige Region finden ===
Zeile 48: Zeile 50:
bild_grau_roi = bild_grau .* uint8(bild_bw_roi);% Grau bild auf ROI reduzieren
bild_grau_roi = bild_grau .* uint8(bild_bw_roi);% Grau bild auf ROI reduzieren
stats = regionprops(bild_bw_roi); % weiße Regionen finden
stats = regionprops(bild_bw_roi); % weiße Regionen finden
</source>
=== 4.Schritt: Entzerrung der ROI ===
<source lang="matlab">
%% Roi erzeugen / finden  und Bild reduzieren
bild_bw_roi = imfill(bild_bw_canny,'holes');% Hier werden alle schwarzen Bereiche, die komlett von weißen Bereichen umgeben sind, auf weiß gesetzt und damit zu dem Objekt hinzugefügt
bild_bw_roi = bwareaopen(bild_bw_roi,6000,4);
%bild_bw_roi = edge(bild_bw_roi,'log');
bild_bw_roi = imfill(bild_bw_roi,'holes');
bild_grau_roi = bild_grau .* uint8(bild_bw_roi);% Grau bild auf ROI reduzieren
stats = regionprops(bild_bw_roi); % weiße Regionen finden
%% Transformation / Entzerung des Bildes
bild_bw_roi_sobel = edge(bild_bw_roi,'Sobel'); % kanten der Roi
% Kordinaten der BoundingBox Ecken ergeben die Unverzerten Ecken --> Nährung an die orginal Größe des Schildes da nicht bekannt 
% Oben Links Ecke
corner_Bb{1} = [stats(1).BoundingBox(1,1),stats(1).BoundingBox(1,2)];
% oben Rechts Ecke
corner_Bb{2} = [stats(1).BoundingBox(1,1)+stats(1).BoundingBox(1,3) ,stats(1).BoundingBox(1,2)];
% Unten Rechts Ecke
corner_Bb{3} = [stats(1).BoundingBox(1,1)+stats(1).BoundingBox(1,3),stats(1).BoundingBox(1,2)+stats(1).BoundingBox(1,4)];
% Unten Links Ecke
corner_Bb{4} = [stats(1).BoundingBox(1,1),stats(1).BoundingBox(1,2)+stats(1).BoundingBox(1,4)];
% Geraden erzeugen um Ecken in der Perspective zuberechnen
[H,theta,rho] = hough(bild_bw_roi_sobel); % Hough Transformation
P = houghpeaks(H,5,'threshold',ceil(0.2*max(H(:)))); % in der Hough Transformation  Maxima finden
lines = houghlines(bild_bw_roi_sobel,theta,rho,P,'FillGap',150,'MinLength',20); % Linen finden
% Paralelen Finden doppelte Linen aussotieren
if (size(lines,2)>4)
    for cnt = 1 : size(lines,2)
        lines_diff(cnt) = abs(lines(cnt).rho) - abs(lines(cnt).theta);  % Differnz der Beiden Winkel erstellen um Gleich gerichtete Linen zu finden
    end
    for cnt = 1 : size(lines,2)
        for cnt2 = cnt : size(lines,2)
       
            lines_diff_each(cnt2,cnt)=min(abs(lines_diff(cnt)-lines_diff(cnt2))); % Alle Differenzen von einander Abziehen um Ähnlichkeit zu finden
       
      end
    end
    [lines_diff_row,lines_diff_colum ]= find (lines_diff_each<40&lines_diff_each>0); % Doppelte linen löschen
    lines(lines_diff_row)=[];
end
for cnt = 1 : size(lines,2)
        lines_theta(cnt) = lines(cnt).theta ; % theta ist der Winkel zur Achse bei ähnlichem winkel sind die Linien Paralle 
end
[b,ix] = sort(lines_theta);% Nach Größe sotieren
% Ecken berechnen aus den Schnittpunkten
corner{4} = schneide ([lines(ix(2)).point1(1,1);lines(ix(2)).point1(1,2)],...
                    [lines(ix(2)).point2(1,1);lines(ix(2)).point2(1,2)],...
                    [lines(ix(3)).point1(1,1);lines(ix(3)).point1(1,2)],...
                    [lines(ix(3)).point2(1,1);lines(ix(3)).point2(1,2)]);
               
corner{1} = schneide ([lines(ix(1)).point1(1,1);lines(ix(1)).point1(1,2)],...
                    [lines(ix(1)).point2(1,1);lines(ix(1)).point2(1,2)],...
                    [lines(ix(3)).point1(1,1);lines(ix(3)).point1(1,2)],...
                    [lines(ix(3)).point2(1,1);lines(ix(3)).point2(1,2)]);
corner{2} = schneide ([lines(ix(1)).point1(1,1);lines(ix(1)).point1(1,2)],...
                    [lines(ix(1)).point2(1,1);lines(ix(1)).point2(1,2)],...
                    [lines(ix(4)).point1(1,1);lines(ix(4)).point1(1,2)],...
                    [lines(ix(4)).point2(1,1);lines(ix(4)).point2(1,2)]);
               
corner{3} = schneide ([lines(ix(2)).point1(1,1);lines(ix(2)).point1(1,2)],...
                    [lines(ix(2)).point2(1,1);lines(ix(2)).point2(1,2)],...
                    [lines(ix(4)).point1(1,1);lines(ix(4)).point1(1,2)],...
                    [lines(ix(4)).point2(1,1);lines(ix(4)).point2(1,2)]);
               
[T,invT] = transformation_Ecken (corner_Bb,corner); % Umrechnung der gebenen ecken in Transformations Struckturen                 
bild_rgb_entzert =imtransform(bild_org,T,'XData',[1 size(bild_org,2)],'YData',[1  size(bild_org,1)]);% Transformation des Bildes
bild_grau_entzert = rgb2gray(bild_rgb_entzert);
bild_bw_entzert = im2bw(bild_grau_entzert,thresh);
</source>
</source>



Version vom 19. Juni 2014, 11:02 Uhr

Autor: Christoph Wiegand
Betreuer: Prof. Schneider

Motivation

Word Lens ist ein geniales App, welches Schilder in alle Weltsprachen übersetzt.

Ziel

Programmieren Sie eine Schildererkennung und Übersetzung in Deutsch.

Aufgabe

  1. Erkennen Sie die Schrift auf den Schildern
  2. Ersetzen Sie diese Schrift perspektivisch durch eine passende deutsche Beschriftung im Videobild.
  3. Präsentieren Sie Ihr Ergebnis in der Form des Videos von Word Lense.

Lösung

Diese Lösung übersetzt Wörter in Beispielbildern. Diese Bilder zeigen rechteckige Schilder mit Text.

1.Schritt: Einlesen der Daten

%% Bild und Daten einlesen
buchstaben_einlesen;
load ('vokabeln.mat') ;
bild_org = imread('IMAG0460.jpg'); % Einlesen des Bildes

2.Schritt: Vorbereiten der Daten

%% Bilddaten umwandeln Ergebnis = Kanten Bild  
bild_grau = rgb2gray(bild_org); % umwandeln des Bildes in ein Graustufenbild 
bild_grau= imadjust(bild_grau); % Kontrast erhöhen 
thresh = graythresh(bild_grau); % automatische Bestimmung eines Schwellenwertes, um Vorder- und Hintergrund zu unterscheiden 
bild_bw = im2bw(bild_grau,thresh); % Umwandeln des Graustufenbildes in ein b/w-Bild  in Abhängigkeit des vorherbestimmten Schwellenwertes 
bild_bw_canny = edge(bild_bw, 'Canny'); % Kantenbild durch Canny


3.Schritt: Wichtige Region finden

%% Roi erzeugen / finden  und Bild reduzieren 
bild_bw_roi = imfill(bild_bw_canny,'holes');% Hier werden alle schwarzen Bereiche, die komlett von weißen Bereichen umgeben sind, auf weiß gesetzt und damit zu dem Objekt hinzugefügt 
bild_bw_roi = bwareaopen(bild_bw_roi,6000,4);
%bild_bw_roi = edge(bild_bw_roi,'log');
bild_bw_roi = imfill(bild_bw_roi,'holes');
bild_grau_roi = bild_grau .* uint8(bild_bw_roi);% Grau bild auf ROI reduzieren
stats = regionprops(bild_bw_roi); % weiße Regionen finden


4.Schritt: Entzerrung der ROI

%% Roi erzeugen / finden  und Bild reduzieren 
bild_bw_roi = imfill(bild_bw_canny,'holes');% Hier werden alle schwarzen Bereiche, die komlett von weißen Bereichen umgeben sind, auf weiß gesetzt und damit zu dem Objekt hinzugefügt 
bild_bw_roi = bwareaopen(bild_bw_roi,6000,4);
%bild_bw_roi = edge(bild_bw_roi,'log');
bild_bw_roi = imfill(bild_bw_roi,'holes');
bild_grau_roi = bild_grau .* uint8(bild_bw_roi);% Grau bild auf ROI reduzieren
stats = regionprops(bild_bw_roi); % weiße Regionen finden



%% Transformation / Entzerung des Bildes 
bild_bw_roi_sobel = edge(bild_bw_roi,'Sobel'); % kanten der Roi 

% Kordinaten der BoundingBox Ecken ergeben die Unverzerten Ecken --> Nährung an die orginal Größe des Schildes da nicht bekannt  
% Oben Links Ecke
corner_Bb{1} = [stats(1).BoundingBox(1,1),stats(1).BoundingBox(1,2)];
% oben Rechts Ecke
corner_Bb{2} = [stats(1).BoundingBox(1,1)+stats(1).BoundingBox(1,3) ,stats(1).BoundingBox(1,2)];
% Unten Rechts Ecke 
corner_Bb{3} = [stats(1).BoundingBox(1,1)+stats(1).BoundingBox(1,3),stats(1).BoundingBox(1,2)+stats(1).BoundingBox(1,4)];
% Unten Links Ecke
corner_Bb{4} = [stats(1).BoundingBox(1,1),stats(1).BoundingBox(1,2)+stats(1).BoundingBox(1,4)];

% Geraden erzeugen um Ecken in der Perspective zuberechnen 

[H,theta,rho] = hough(bild_bw_roi_sobel); % Hough Transformation 
P = houghpeaks(H,5,'threshold',ceil(0.2*max(H(:)))); % in der Hough Transformation  Maxima finden 
lines = houghlines(bild_bw_roi_sobel,theta,rho,P,'FillGap',150,'MinLength',20); % Linen finden 

% Paralelen Finden doppelte Linen aussotieren

if (size(lines,2)>4)
    for cnt = 1 : size(lines,2)
        lines_diff(cnt) = abs(lines(cnt).rho) - abs(lines(cnt).theta);  % Differnz der Beiden Winkel erstellen um Gleich gerichtete Linen zu finden 
    end

    for cnt = 1 : size(lines,2)
        for cnt2 = cnt : size(lines,2)
        
            lines_diff_each(cnt2,cnt)=min(abs(lines_diff(cnt)-lines_diff(cnt2))); % Alle Differenzen von einander Abziehen um Ähnlichkeit zu finden 
        
       end
    end
    [lines_diff_row,lines_diff_colum ]= find (lines_diff_each<40&lines_diff_each>0); % Doppelte linen löschen 

    lines(lines_diff_row)=[];
end

for cnt = 1 : size(lines,2)
        lines_theta(cnt) = lines(cnt).theta ; % theta ist der Winkel zur Achse bei ähnlichem winkel sind die Linien Paralle   
end

[b,ix] = sort(lines_theta);% Nach Größe sotieren 

% Ecken berechnen aus den Schnittpunkten

corner{4} = schneide ([lines(ix(2)).point1(1,1);lines(ix(2)).point1(1,2)],...
                     [lines(ix(2)).point2(1,1);lines(ix(2)).point2(1,2)],...
                     [lines(ix(3)).point1(1,1);lines(ix(3)).point1(1,2)],...
                     [lines(ix(3)).point2(1,1);lines(ix(3)).point2(1,2)]);
                 
corner{1} = schneide ([lines(ix(1)).point1(1,1);lines(ix(1)).point1(1,2)],...
                     [lines(ix(1)).point2(1,1);lines(ix(1)).point2(1,2)],...
                     [lines(ix(3)).point1(1,1);lines(ix(3)).point1(1,2)],...
                     [lines(ix(3)).point2(1,1);lines(ix(3)).point2(1,2)]);

corner{2} = schneide ([lines(ix(1)).point1(1,1);lines(ix(1)).point1(1,2)],...
                     [lines(ix(1)).point2(1,1);lines(ix(1)).point2(1,2)],...
                     [lines(ix(4)).point1(1,1);lines(ix(4)).point1(1,2)],...
                     [lines(ix(4)).point2(1,1);lines(ix(4)).point2(1,2)]);
                 
corner{3} = schneide ([lines(ix(2)).point1(1,1);lines(ix(2)).point1(1,2)],...
                     [lines(ix(2)).point2(1,1);lines(ix(2)).point2(1,2)],...
                     [lines(ix(4)).point1(1,1);lines(ix(4)).point1(1,2)],...
                     [lines(ix(4)).point2(1,1);lines(ix(4)).point2(1,2)]);

                 
[T,invT] = transformation_Ecken (corner_Bb,corner); % Umrechnung der gebenen ecken in Transformations Struckturen                  

bild_rgb_entzert =imtransform(bild_org,T,'XData',[1 size(bild_org,2)],'YData',[1  size(bild_org,1)]);% Transformation des Bildes

bild_grau_entzert = rgb2gray(bild_rgb_entzert); 
bild_bw_entzert = im2bw(bild_grau_entzert,thresh);

Siehe auch

Beispiele für Warnschilder

Weblinks


→ zurück zum Hauptartikel: Digitale Signal- und Bildverarbeitung SoSe2014