DSB18: Ampelphasenerkennung: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
'''Autor:''' <br/> | '''Autor:''' <br/> | ||
'''Betreuer:''' [[Benutzer:Ulrich_Schneider| Prof. Schneider]] | '''Betreuer:''' [[Benutzer:Ulrich_Schneider| Prof. Schneider]] | ||
== Motivation == | == Motivation == | ||
ArUco Marker ermöglichen eine low-cost Lokalisierung. | ArUco Marker ermöglichen eine low-cost Lokalisierung. |
Version vom 11. April 2018, 17:46 Uhr
Autor:
Betreuer: Prof. Schneider
Motivation
ArUco Marker ermöglichen eine low-cost Lokalisierung.
Ziel
Die Verarbeitung von ArUco Marken mit Matlab ermöglicht die Lokalisierung der Marker in einer realen Umgebung. So lässt sich mir einfachen Mitteln eine Lokalisierung (Ground Truth) realisieren. Position und Lage der Marker sollen in Echtzeit in Weltkoordinaten bestimmt werden.
Anforderungen
- Recherchieren Sie was ArUco Marker sind und wie sich diese in Position und Lage detektieren lassen.
- Erstellen Sie ArUko Marken mittels Matlab.
- Nutzen Sie eine Webcam für die Detektion der Marker.
- Kalibrieren Sie diese Kameras.
- Setzen Sie ein Verfahren zur Bestimmung der Pose eines ArUko Markers mit Matlab um.
- Transformieren Sie ein Objekt aus der Kameraperspektive in Weltkoordinaten.
- Stellen Sie die Objekte im Sichtfeld in der Draufsich metrisch dar.
- Schätzen Sie die Genauigkeit Ihres 3D-Sensors ab.
- Wissenschaftliche Dokumentation als HSHL-Wiki Artikel
- Softwareentwicklung nach SDE Standard in SVN
- Funktionsnachweis als YouTube-Video (vgl. Veranstaltungsregeln)
Lösungen
Weblinks
- Detection of ArUco Markers
- 3D camera calibration with OpenCV and arUco markers
- YouTube: Aruco Markers Tutorial E01 - What are Aruco Markers?
- Robot Localization using ArUco
BSD-Lizenzbedingung BSD-Lizenz
Copyright (c) 2014, Hochschule Hamm-Lippstadt, Dep. Lip. 1, Prof. Schneider
Hochschule Hamm-Lippstadt. Alle Rechte vorbehalten.
→ zurück zum Hauptartikel: Digitale Signal- und Bildverarbeitung SoSe2018