ArduMower: Kartierung in Matlab/Simulink: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 10: Zeile 10:


== Anforderungen==
== Anforderungen==
Im Lastenheft des Projektes ArduMower wird die Erstellung einer selbstlernenden Karte gefordert:
[[Datei:Req10 2290.jpg]]
{| class="mw-datatable"
{| class="mw-datatable"
! style="font-weight: bold;" | ID
! style="font-weight: bold;" | ID
Zeile 87: Zeile 89:
|}
|}
[[Datei:Fahrzeugmodell_kinematisch_3Rad_AnforderungenSchnittstellen.JPG|rechts|mini|300px|Schnittstellen für die Modellierung eines 3-rädrigen Fahrzeugs mit Geschwindigkeiten, Ortsvektoren und Koordinatensystemen.]]
[[Datei:Fahrzeugmodell_kinematisch_3Rad_AnforderungenSchnittstellen.JPG|rechts|mini|300px|Schnittstellen für die Modellierung eines 3-rädrigen Fahrzeugs mit Geschwindigkeiten, Ortsvektoren und Koordinatensystemen.]]


== Funktionaler Systementwurf / Technischer Systementwurf ==
== Funktionaler Systementwurf / Technischer Systementwurf ==

Version vom 21. Januar 2018, 13:17 Uhr

Matrix-basierte Karte der zu mähenden Fläche in Matlab/Simulink

Autor: Prof. Dr.-Ing. Schneider


Einleitung

Dieser Artikel beschreibt den Aufbau einer Matrix-basierten Karte zur Darstellung des aktuellen Mähstandes eines Rasenmähroboters. Der Anstoß zur Entwicklung dieser Karte lieferte das Projekt "ArduMower", in dem der Kollege Prof. Göbel und der Autor dieses Artikels mit Studierenden gemeinsam einen autonomen Rasenmäher entwickeln, siehe Projekt_ArduMower.

Das systematische Vorgehen bei der Entwicklung des Modells orientiert sich am V-Prozessmodell.

Anforderungen

Im Lastenheft des Projektes ArduMower wird die Erstellung einer selbstlernenden Karte gefordert:

ID Inhalt Ersteller Datum Geprüft von Datum
1 Das Fahrzeugmodell muss die Kinematik des als starr angenommenen Fahrzeugkörpers beschreiben. Prof. Göbel 07.06.2017 Prof. Schneider 08.06.2017
2 Das Fahrverhalten muss unter der Annahme korrekt abgebildet werden, dass die Räder schlupffrei abrollen. Prof. Göbel 07.06.2017 Prof. Schneider 08.06.2017
3 Am Eingang werden die Längsgeschwindigkeiten entlang der x-Achse des Fahrzeugkoordinatensystems K der Räder rechts (R) und links (L) vorgegeben. Prof. Göbel 07.06.2017 Prof. Schneider 08.06.2017
4 Am Ausgang müssen
  1. die Position und Geschwindigkeit des Mittelpunktes M und des frei definierbaren Punktes D in x- und y-Richtung des Inertialsystems I
  2. der Gierwinkel
  3. und die Gierrate

zur Verfügung stehen.

Prof. Göbel 07.06.2017 Prof. Schneider 08.06.2017
5 Das Modell muss in Matlab/Simulink erstellt werden. Prof. Göbel 07.06.2017 Prof. Schneider 08.06.2017
6 Die Rechnung des Modells erfolgt mit diskreten Zeitschritten (es sind diskrete Integratoren zu verwenden). Prof. Göbel 07.06.2017 Prof. Schneider 08.06.2017
7 Die Dokumentation muss auf Basis der Mehrkörpersystemeberechnung leicht nachvollziehbar erfolgen. Prof. Göbel 07.06.2017 Prof. Schneider 08.06.2017
8 Bei der Simulation muss eine graphische Ausgabe der Position und Richtung des Fahrzeugs in x- und y-Koordinaten des I-Systems erfolgen. Prof. Göbel 07.06.2017 Prof. Schneider 08.06.2017
9 Die Signalnamen müssen gemäß nebenstehender Abbildung gewählt werden. Prof. Göbel 07.06.2017 Prof. Schneider 08.06.2017
Schnittstellen für die Modellierung eines 3-rädrigen Fahrzeugs mit Geschwindigkeiten, Ortsvektoren und Koordinatensystemen.

Funktionaler Systementwurf / Technischer Systementwurf

Bei der Größe des zu erstellenden Modells werden die Schritte Funktionaler Systementwurf / Technischer Systementwurf des V-Modells zusammen gelegt und bereits Schnittstellen zwischen den einzelnen Blöcken definiert.

Das Fahrzeugmodell wird unterteilt in

  • ein Block "Gieren und Geschwindigkeit in Achsmitte", in dem die Position und Geschwindikeit der Punkte M und D in Fahrzeugkoordinaten K bestimmt werden.
  • und zwei Blöcke "Transformation und Integration Punkt M/D", in denen Position und Geschwindikeit der Punkte M und D in Inertialkoordinaten I bestimmt werden.
Funktionaler Systementwurf für die Modellierung eines 3-rädrigen Fahrzeugs mit Geschwindigkeiten, Ortsvektoren und Koordinatensystemen.

Komponentenspezifikation

Das Modell wird insgesamt als Komponente aufgefasst, d. h. die einzelnen Blöcke aus dem Systementwurf werden als Bestandteil der Komponente "Fahrzeugmodell" definiert. An dieser Stelle wäre es selbstverständlich möglich, die Komponente weiter aufzuteilen (damit würde die Komponente in Teilsystem umbenannt) und auch beim Testen diese einzelnen Komponenten dann zu berücksichtigen.


xxx hier fehlt noch eine Komponentenspezfikation, die genau darlegt, wie die Berechnung vonstatten gehen soll! xxx

Programmierung

Bei der Bestimmung der Geschwindikeit in M wird mit dem Satz "räumliche Bewegung" die bekannte Geschwindigkeit in R, der Relativdrehvektor der Koordinatensysteme K gegenüber I sowie der Ortsvektor zwischen R und M verwendet (siehe [1]):

Im körperfesten Koordinatensystem K beschrieben folgt eine Beschreibung, in der jeder Term selbst 3 Komponenten (x, y, z) enthält und mit denen jetzt im jeweiligen Koordinatensystem gerechnet werden kann (das ging bei der vektoriellen Schreibweise oben noch nicht!).


Mit den eingetragenen Komponenten sieht die Gleichung wie folgt aus:

Zur Bestimmung der Gierrate wird obiger Ansatz erneut verwendet, um von der bekannten Geschwindigkeit in R auf die ebenfalls bekannte Geschwindikeit in L "zu schließen", sodass der Relativdrehvektor der Koordinatensysteme K gegenüber I in K-Koordinaten bestimmt werden kann (jetzt mit Komponenten besser Spaltenmatrix genannt: ). Es folgt:

.

Mit eingesetzten Komponenten ergibt sich im körperfesten System K:

.

Aus Zeile 1 der obigen Gleichung kann die Gierrate (selbstverständlich im körperfesten System K) mit nachstehendem Zusammenhang ermittelt werden.

Umgestellt folgt daraus:

Um die Position des Punktes M in Inertialkoordinaten zu berechnet, wird seine Geschwindigkeit in Intertialkoordinaten I benötigt, da diese dann durch eine einfache Integration in die Position überführt werden kann. Im körperfesten System ist dies nicht erlaubt bzw. möglich, da dieses sich dreht! Mit Hilfe einer Transformationsmatrix kann diese Umrechnung in einem Schritt erfolgen.


Der über den Ortsvektor von R nach D beliebig wählbare Punkt D kann genauso wie oben der Mittelpunkt M behandelt werden. Die Gleichungen in Kurzform dazu sind wie folgt.

Im körperfesten Koordinatensystem K beschrieben folgt eine Beschreibung, in der jeder Term selbst 3 Komponenten (x, y, z) enthält und mit denen jetzt im jeweiligen Koordinatensystem gerechnet werden kann (das ging bei der vektoriellen Schreibweise oben noch nicht!).

Das Ergebnis für D lautet:

.

Komponententest

Da es sich bei dieser Entwicklung um die einer einzelnen Komponente handelt, schließt der Komponententest mit dem Testbericht die Entwicklung ab.

ID Testfallbeschreibung Eingang Eingang Erwartetes Ergebnis Testergebnis Testperson Datum
1 Das Fahrzeugmodell steht. 0 0 Alle Ausgänge sind Null. OK Prof. Göbel 10.06.2017
2 Das Fahrzeugmodell fährt eine Rechtskurve. 1 0 Rechtskurve: Negative Gierrate, negativer Gierwinkel. OK Prof. Göbel 10.06.2017
3 Das Fahrzeugmodell fährt eine Linkskurve. 0 1 Linkskurve: Positive Gierrate, positiver Gierwinkel. OK Prof. Göbel 10.06.2017
4 Das Fahrzeugmodell fährt geradeaus. 1 1 Keine Gierrate und Gierwinkel, . OK Prof. Göbel 10.06.2017

Als Abschluss zeigt die letzte Abbildung dieses Artikels eine Ergebnisdarstellung der Fahrzeugbewegung in I-Koordinaten (Draufsicht).

Ergebnisdarstellung für die Modellierung eines 3-rädrigen Fahrzeugs in einer x-y-Draufsicht

Zusammenfassung

Das Modell ist fertig und funktioniert wie gewünscht! Somit ist die Entwicklung von Algorithmen möglich, ohne ein Fahrzeug in Hardware zur Verfügung zu haben. Dadurch eröffnen sich ernorme Möglichkeiten wie z. B. simultanes Entwickeln, automatisiertes Testen, simulative Auslegung von Reglern u. s. w.!

Literaturverzeichnis

  1. M. Göbel: Formelsammlung Mehrkörpersysteme und Robotik, HSHL, Version 29.06.2017



→ zurück zum Hauptartikel: Projekt ArduMower