AMR 2013: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
Zeile 654: Zeile 654:
|-
|-
| 2
| 2
|  
| PB2
|  
| PC_ON_SIGNAL
|-
|-
| 3
| 3

Version vom 21. März 2016, 11:44 Uhr

Dieses Artikel befasst sich mit dem Aufbau des autonomen mobilen Roboters AMR 2013 an der HSHL.


Systemübersicht

Konstruktion

Fahrgestell

Aktuatorenschalter

Der Aktuatorenschalter schaltet den Fahrtenregler und Lenkservo aus, sodass keine Fahrt- und Lenkbewegung möglich ist.

Stellung Funktion
Links
Mitte
Rechts

Motor

Anschlüsse

Der Motor verfügt über zwei Anschlüsse. Der erste Anschluss dient zur Steuerung der drei Phasen des Motors A, B und C seitens des Fahrtenregler. Da diese Leitungen hohe Ströme führen, ist äußerste Vorsicht bei der Umgang mit denen geboten. Der zweite Anschluss ist der Sensoranschluss. Hier überträgt der Motor der Stand der Phasen an dem Fahrtenregler weiter, um genaue Ansteuerung zu ermöglichen.

Hall-Sensor

Der Sensoranschluss des Motors wird in Form eines 6-poligen ZH-Buchse mit Rastermaß 1,5mm bereitgestellt. Die Signale sind wie folgend belegt:

Pin Farbe Funktion
1   Schwarz GND
2   Orange Phase A
3   Weiß Phase B
4   Grün Phase C
5   Blau NC
6   Rot NC

Bei etwa der maximalen Geschwindigkeit ergeben sich Motorphasen der Periodendauer von ca. 10,2ms. Die Mindestzeit zwischen zwei Flanker der Hall-Phasen beträgt dabei ca. 1,5ms. Weitere Informationen zu Geschwindigkeitsermittlung durch die Hall-Signale sind verfügbar unter: Signalverarbeitung und Geschwindigkeitsermittlung

Empfängermodul

Diese Beschreibung beschränkt sich zunächst auf dem Fernbedienungsempfänger Futaba F143F 50MHz FM. Nichtsdestotrotz können die hier enthaltene Informationen auf andere Empfänger für die gleiche Anwendung übertragen werden.

Der Fernbedienungsempfänger empfängt die Radiosignale der Fernbedienung und gibt Steuersignale zum Lenkservo und Fahrtenregler ab.


Anschlüsse

Die Stromversorgung des Empfängers erfolgt über den Fahrtenregler, der wiederum die Versorgung von Fahrakku entnimmt. Gemessen ist ein Versorgungspegel von 6V.

Die Versorgung des Empfängers kann auch über den BAT- oder B/C-Anschluss erfolgen. Zu beachten ist, dass die Masse- und Versorgungsanschlüsse jeweils über alle Steckplätze kurzgeschlossen sind. An den Anschlüssen CH1 - CH3 können 3 Ausgänge angeschlossen werden. Hier werden der Fahrtenregler an CH1 und der Lenkservo an CH3 angeschlossen.



Lenk-Signal

Das Lenksignal wird als PWM-Signal vom Empfänger an dem Lenkservo gegeben. Das Signal ist wie folgend beschaffen:

Parameter Wert
Amplitude 3 V
Periodendauer 18,50 ms
Frequenz 54 Hz
Pulsweite Lenkung 0-Position 1,52 ms
Tastgrad Lenkung 0-Position 8,22%
Pulsweite Lenkung Rechts 1,10 ms
Tastgrad Lenkung Rechts 5,94%
Pulsweite Lenkung Links 1,92 ms
Tastgrad Lenkung Links 10,38%


Gas-Signal

Ähnlich wie das Lenksignal wird das Gassignal in einem PWM-Signal moduliert. Das Signal hat folgende Eigenschaften:

Parameter Wert
Amplitude 2,7 V
Periodendauer 18,50 ms
Frequenz 54 Hz
Pulsweite bei Pedal 0-Position 1,50 ms
Tastgrad Pedal 0-Position 8,11 %
Pulsweite Vollgas Vorwärts 1,93 ms
Tastgrad Vollgas Vorwärts 10,43 %
Pulsweite Vollgas Rückwärts 1,11 ms
Tastgrad Vollgas Rückwärts 6 %

Signalschwankungen

Die oben dargestellten Pulsbreiten der Signale schwanken bei konstanter Betätigung der Fernbedienung um ca. 65µs.

Fahrtenregler

Pin Farbe Funktion
1   Schwarz GND
2   Rot Vcc
3   Weiß PWM-Eingang

Servo

Pin Farbe Funktion
1   Braun GND
2   Rot Vcc
3   Weiß PWM-Eingang

Hall-Verteiler

Akku

Verkabelung

Anschlussplatine

Karosserie

Adapterplatine

Anschlüsse an der Adapterplatine

NC: Not Connected, Pin nicht angeschlossen bzw. ohne Funktion.

Stecker auf Adapterplatine Funktion Pin Auf Stecker Pin-Funktion Pin auf dSPACE DS1104
J1 Spannungsversorgung der Adapterplatine 1 Vcc = 5V
2 GND
J2 Spannungsversorgung der Kamera 1 Vcc
2 GND
J3 Steuersignal der blauen LED-Diode

(Fernbedienungseingriff)

1 Vcc
2 GND
3 Steuersignal IO15, B-27
J4 Eingang der Hall-Signale vom Motor 1 NC
2 Hall-Signal A IO6, A-31
3 Hall-Signal B IO7, B-31
4 Hall-Signal C IO8, A-30
5 GND
J5 Infrarotsensor 3 hinten rechts 1 Vcc
2 GND
3 Analogausgang des Sensors , A-44
J6 Infrarotsensor 2 hinten seitlich 1 Vcc
2 GND
3 Analogausgang des Sensors , B-46
J7 Ultraschallsensor 1 vorne links 1 GND
2 Triggersignal des Sensors , A-16
3 Triggersignal des Sensors , A-16
4 Echosignal des Sensors , A-7
5 Vcc
J8 Ultraschallsensor 2 vorne rechts 1 GND
2 NC
3 Triggersignal des Sensors ,
4 Echosignal des Sensors ,
5 Vcc
J9 Eingangssignal der Fernbedienung 1 NC
2 Lenksignal der Fernbedienung , A-9
3 Fahrsignal der Fernbedienung , A-8
4 Vcc
5 GND
J10 Ausgangssignal zu Fahrtenregler 1 NC
2 Lenksignal , B-12
3 Fahrsignal , B-16
4 Vcc bei eingesetztem Jumper J21
5 GND
J11 UART RS232 1 CTS , B-3
2 RTS , A-3
3 DRS , B-4
4 GND
5 DTR , A-4
6 RXD , B-5
7 TXD , A-5
8 DCD , B-2
J12 Infrarotsensor 4 hinten links 1 Vcc
2 GND
3 Analogsignal des Sensors , B-44
J13 Taster 1 GND
2 Taster 1 , B-29
3 Taster 2 , A-28
4 Taster 3 , B-28
5 Taster 4 , A-27
J14 Infrarotsensor 1 vorne seite 1 Vcc
2 GND
3 Analogsignal des Sensors , A-46
J15 Anschluss A an der dSPACE DS1104
J16 Anschluss B an der dSPACE DS1104
J17 Jumper zur Auswahl, welche Achse aus Gyrosensor gelesen wird 1 Z-Achse
2 Ausgangssignal der gewählten Achse , B-48
3 X-Achse
J18 Jumper zur durchleitung der Hall-Signale zu der XOR-Auswertelogik 1 Eingang Hall-A
2 Ausgang Hall-A
3 Eingang Hall-B
4 Ausgang Hall-B
5 Eingang Hall-C
6 Ausgang Hall-C
J19 Ausgang der XOR-Auswertelogik der Hall-Signale. Weiterleitung der Signale über Jumper 1 Anschluss des Ausgangssignals von Hall-Auswertelogik an DS1104 , B-25
2 Ausgangssignal von Hall-Auswertelogik
3 Anschluss des invertierten Ausgangssignals von Hall-Auswertelogik an DS1104 , B-26
4 Invertiertes Ausgangssignal von Hall-Auswertelogik
J21 Jumper zur Durchleitung von Vcc zu Fahrtenregler 1 Pin 4 auf J10
2 Vcc
J22 Jumper zur Auswahl des Z-Signals aus dem Gyrosensor. Es soll entweder 1 mit 2 oder 2 mit 3 verbunden werden 1 1x Z
2 Weiterleitungspin
3 4x Z
J23 Jumper zur Auswahl des X-Signals aus dem Gyrosensor. Es soll entweder 1 mit 2 oder 2 mit 3 verbunden werden 1 1x X
2 Weiterleitungspin
3 4x X
J26 Spannungseingang des Fahr-Akkus zur Spannungsmessung 1 GND
2 Spannungseingang Akku , B-50
J27 Spannungseingang der PC-Akkus zur Spannungsmessung 1 GND
2 Spannungseingang Akku 2 , A-50
3 Spannungseingang Akku 1

Gyrosensor

Rechner

dSPACE DS1104 RCP

Kamera

VRmagic D2 OEM-Version Spannungsversorgung mit Vcc=5V von der Adapterplatine (J2) und Anschluss an dem Rechner über die Ethernet-Schnittstelle

LIDAR

IR-Sensoren

Lichter

Anschlussplatine der Lichter

Powerpanel

Schaltung und Layout

Anschlüsse des Mikrocontrollers

Folgende Tabelle zeigt die Funktion der Anschlüsse des Mikrocontrollers auf der Steuerplatine

Pin Port/Name Funktion
1
2 PB2 PC_ON_SIGNAL
3 PB2 uC_PC_PWR_ENABLE
4 PB3 Einschalten Bar-Anzeige 1
5 PB4 Einschalten Bar-Anzeige 2
6 PB5 Baranzeige LED0
7 PB6 Baranzeige LED1
8 PB7 Baranzeige LED2
9 !RESET
10 VCC
11 GND
12 NC
13 NC
14 PD0 uC_ENABLE_PC_BAT
15 PD1 uC_ENABLE_PC_EXTERNAL
16 PD2 Baranzeige LED3
17 PD3 Baranzeige LED4
18 PD4 Baranzeige LED5
19 PD5 Reserviert für ein Buzzer
20 PD6 Baranzeige LED6
21 PD7 Baranzeige LED7
22 PC0 Baranzeige LED8
23 PC1 Baranzeige LED9
24
25
26
27
28
29
30
31
32
33
34
35
36
37 PA3 Status-LED der externen Stromversorgung (Netzteil)
38 PA2/ADC2 Spannungsmessung Fahr-Akku
39 PA1/ADC1 Spannungsmessung externe Versorgung (Netzteil)
40 PA0/ADC0 Spannungsmessung PC-Akku

Aufladen der Akkus

Verkabelung