Wägedrucksensor mit Wägezelle (1kg) HX711AD: Unterschied zwischen den Versionen
Zeile 58: | Zeile 58: | ||
! # !! Anzahl !! Material | ! # !! Anzahl !! Material | ||
|- | |- | ||
| 1 || 1|| PC mit MATLAB/Simulink | | 1 || 1|| PC mit MATLAB/Simulink R2023b | ||
|- | |- | ||
| 2 || 1 || | | 2 || 1 || Wägezelle 1 kg | ||
|- | |- | ||
| 3 || 1 || Arduino Uno R3 | | 3 || 1 || Arduino Uno R3 | ||
Zeile 66: | Zeile 66: | ||
| 4 || 1 || Streckbrett | | 4 || 1 || Streckbrett | ||
|- | |- | ||
| 5 || 5 || | | 5 || 5 || LCD Modul 16x02 I<sup>2</sup>C | ||
|- | |||
| 6 || 6 || HX711AD | |||
|} | |} | ||
Beschreibung Funktionsweise der verwendeten Hard- und Software | Beschreibung Funktionsweise der verwendeten Hard- und Software |
Version vom 24. Juli 2024, 21:35 Uhr
Autor: | Felix Neubauer |
Studiengang: | Business and Systems Engineering |
Modul: | BSE-M-2-1.03, Hausarbeit in Angewandte Informatik gehalten von Prof. Dr.-Ing. Schneider |
Semester: | Sommersemester 2024 |
Abgabetermin: | 28.07.2024 |
Einführung
In der Lehrveranstaltung Angewandte Informatik ist im Sommersemester 2024 eine semesterbegleitende Arbeit zu leisten. Jeder Student konnte sich einen Sensor seiner Wahl aussuchen und an diesem Sensor, die vorgegebenen Aufgaben abarbeiten. Die Aufgaben können in Tabelle 1 eingesehen werden.In diesem Kapitel geht es um eine Wägezelle (1 kg), die in Kombination mit dem Verstärker HX711AD betrieben wird. Der Sensor wird mithilfe des Microcontrollers Arduino Uno R3 ausgelesen. Die Software, um die Werte auszulesen wird in Simulink entworfen. Es werden außerdem in Simulink, die Signale gefiltert und für den weiteren gebrauch verarbeitet. Hier werden gelernte Methoden aus dem Modul Signalverarbeitende Systeme, welches ebenfalls in dem Studiengang BSE angeboten wird, angewendet.
Aufgabenstellung
Messen Sie die Masse mittels Wägezelle.
Anforderungen | |||||||||||||||||||||||||||
|
- Thema/Fragestellung: Messung des Gewichts mittels Wägezelle (1kg) und HX711AD verstärker
- Hypothese: Das Gewicht lässt sich mit der Wägezelle auf eine Genauigkeit ±0,02% F.S auslesen.
- Einordnung in den Lehrplan
Die Lehrveranstaltung angewandte Informatik baut auf das Modul Signalverarbeitende Systeme auf. Zum Abschluss und zum vertiefen der gelernten Methoden bietet sich die Hausarbeit, mit der praktischen Anwendung (auslesen eines Sensors) gut an.
Projektbeschreibung
# | Anzahl | Material |
---|---|---|
1 | 1 | PC mit MATLAB/Simulink R2023b |
2 | 1 | Wägezelle 1 kg |
3 | 1 | Arduino Uno R3 |
4 | 1 | Streckbrett |
5 | 5 | LCD Modul 16x02 I2C |
6 | 6 | HX711AD |
Beschreibung Funktionsweise der verwendeten Hard- und Software
- Arduino Uno R3
- Sensor Sharp GP2-0430K
- Simulink R2022b
Technische Daten
Messbereich | 0 ° .. 180 ° |
PWM-Modulation | analog |
PWM-Pulszykluszeit | 20 ms |
PWM-Pulsweite | 500-2400 ms |
Versorgungsspannung | 4.0 V .. 7.2 V |
Versorgungsstrom | 20 mA |
Geschwingigkeit | 0,12 s/60 ° (@4,8 V, lastfrei) |
Drehmoment | 1,5 kg/cm (@4,8 V) |
Gewicht | 9 g |
Getriebe | Kunststtoff |
Arbeitstemperatur | 0 °C .. +55 °C |
Abmessungen | 22,2 mm x 11,8 mm x 31 mm |
Pinbelegung
Pin | Belegung | Signal |
---|---|---|
1 | Versorgungsspannung VCC | 5 V |
2 | Triggereingang | TTL-Pegel |
3 | Echo, Ausgang Messergebnis | TTL-Pegel |
4 | Masse (GND) | 0 V |
Versuchsaufbau und Durchführung
Versuchsaufbau
Der Versuchsaufbau wird durch einen Schaltplan (Abb. 2), Anschlussplan (Abb. 3) und Foto des Aufbaus (Abb. 4) dokumentiert.
Versuchsdurchführung
Das Modell zur Datenverarbeitung wurde gemäß Abb. 5 in Simulink aufgebaut. Die Messdaten wurden aufgezeichnet. Ein Video der Versuchsdurchführung findet sich hier.
Modelleinstellungen: Arduino Uno, Solver: Fixed-step, discrete, Abtastrate: 0,001 s
Versuchsbeobachtung
Das Signal des Sensors weist alle 40 ms systematische Ausreisser auf (vgl. Abb. 6, rote Kurve).
Auswertung
Die Messhypothese wurde verworfen. Der Sensor weist systematische Messwertausreisser auf.
Die Ausreisser lassen sich mit einem Signalfilter eliminieren. Hierzu eignet sich ein Rangordnungsfilter (z. B. Median-Filter). Das Filter wird hierzu auf eine Fensterbreite von 30 Werten eingestellt. Das zufriedenstellende Filterergebnis für statische Werte zeigt Abb. 6 als blaue Kurve. Es konnte mit dynamische Werten verifiziert werden (vgl. Abb. 7). Das Datenblatt ([2, S. 6]) belegt die Messungen und bezeichnet die Messausreisser als "instabile Ausgabe" für maximal 5 ms alle 40 ms. Mit 50 Werten erhöht sich die Filterwirkung, es entsteht jedoch ein Delay von 10 ms. Mit 10 Werten ist die Filterwirkung zu gering.
Zusammenfassung und Ausblick
- Zusammenfassung der Kapitel 1-4
- Diskussion der Ergebnisse
- Ausblick
- Selbstreflexion/Lessons learned
Ergebnisvideo
Binden Sie hier Ihr Ergebnisvideo ein.
Anleitung: Videos im Wiki einbinden
Lernzielkrontrolle
Beantworten Sie in Ihrem Artikel die Lernzielkontrollfragen.
Lernzielkontrollfragen |
|
Literatur
Zitieren Sie nach DIN ISO 690:2013-10.
Anhang
- Datenblätter
- Simulink-Modell
- Originaldateien (PAP, Schaltplan,... )
→ zurück zum Hauptartikel: BSE Angewandte Informatik SoSe24 | Hausarbeit SoSe24