Regelstrecke: Unterschied zwischen den Versionen
Zeile 197: | Zeile 197: | ||
* Summationsblock: Der Summationsblock addiert die Heiz-/Kühlleistung und subtrahiert die Transmissionswärmeverluste, um die tatsächliche Wärmeleistung (gesamte Wärmeleistung) zu berechnen. | * Summationsblock: Der Summationsblock addiert die Heiz-/Kühlleistung und subtrahiert die Transmissionswärmeverluste, um die tatsächliche Wärmeleistung (gesamte Wärmeleistung) zu berechnen. | ||
4. Umwandlung in Energie | 4. Umwandlung in Energie: | ||
* Eingangsgröße: gesamte Wärmeleistung | * Eingangsgröße: gesamte Wärmeleistung | ||
* Integrationsblock: Der Integrationsblock (1/s) wandelt die gesamte Wärmeleistung in Energie um, da für die Berechnung der Temperaturdifferenz die Wärmeenergie (<math>Q_eff</math>) benötigt wird. | * Integrationsblock: Der Integrationsblock (1/s) wandelt die gesamte Wärmeleistung in Energie um, da für die Berechnung der Temperaturdifferenz die Wärmeenergie (<math>Q_eff</math>) benötigt wird. | ||
5. Berechnung | 5. Berechnung Raumtemperatur_ist: | ||
* Eingangsgröße: | * Eingangsgröße: | ||
** Wärmeenergie (<math>Q_eff</math>) | ** Wärmeenergie (<math>Q_eff</math>) |
Version vom 17. Juli 2024, 15:25 Uhr
Autoren: Johann Kismann, Oliver Scholze
Einleitung
Im Studiengang "Business and Systems Engineering" wird in der Veranstaltung "System Design Engineering" der Energiehaushalt eines Hauses über ein Jahr simuliert.
Um diese Simulation präzise und detailliert durchzuführen, werden verschiedene Subsysteme gebildet. In diesem Fall wird die Regelstrecke des Hauses untersucht. Diese dient dazu, die Raumtemperatur in Abhängigkeit von verschiedenen Einflüssen zu bestimmen und den anderen Subsystemen zur Verfügung zur stellen.
Vorgehensweise nach dem V-Modell
Das V-Modell beschreibt einen strukturierten Ansatz zur Systementwicklung, der in verschiedene Phasen unterteilt ist. Jede Phase der Entwicklung wird durch eine entsprechende Testphase auf der gegenüberliegenden Seite des "V" überprüft, beginnend mit der Anforderungsdefinition bis hin zur Programmierung und dem abschließenden Abnahmetest. Dies gewährleistet, dass jede Komponente gründlich spezifiziert, entwickelt und getestet wird, bevor sie in das Gesamtsystem integriert wird.
Anforderungsdefinition
Die folgende Tabelle zeigt exemplarisch einige Anforderungen und Informationen, die für die Simulation der Innentemperatur eines Raumes wichtig sind. Diese Tabelle dient als Auszug aus einer detaillierteren Tabelle, die alle relevanten Anforderungen und Informationen enthält. Für die vollständige Tabelle klicken Sie bitte HIER.
ID | Typ (I = Info, A = Anforderung) | Kapitel | Inhalt |
---|---|---|---|
- | I | 2 | Grundlegendes Verhalten der Simulation |
005 | A | 2 | Der Status der Rollläden muss entsprechend des Wetters und der Temperatur aktualisiert werden. |
007 | A | 2 | Die Innentemperatur muss abhängig von den Eingangseinflüssen simuliert und übermittelt werden. |
- | I | 3 | Reaktion auf Umwelteinflüsse |
009 | A | 3 | Ist die Temperatur des Raumes über 25°C, so muss die Rolllade herunterfahren. |
010 | A | 3 | Ist die Rolllade unten und die Raumtemperatur geringer als 25°C, so muss die Rolllade hochfahren. |
Funktionaler Systementwurf/Technischer Systementwurf
Die relevante Diskussion der Ergebnisse fand während der Vorlesung statt und ist in den entsprechenden Lehrmaterialien festgehalten.[3] Zur besseren Verständlichkeit werden die Systementwürfe kurz erläutert:
- Funktionaler Systementwurf
Im funktionalen Systementwurf liegt der Schwerpunkt auf der Festlegung der Funktionen und Verhaltensweisen eines Systems. Dabei werden die Anforderungen an das System analysiert und in funktionale Spezifikationen überführt.
- Technischer Systementwurf
Der technische Systementwurf beschäftigt sich mit der praktischen Umsetzung der im funktionalen Entwurf definierten Anforderungen und Funktionen. Hier liegt der Fokus auf der Implementierung des Systems, einschließlich der Festlegung der Architektur, der Komponenten und ihrer Interaktionen.
Komponentenspezifikation
Die Komponentenspezifikation definiert die Anforderungen und Eigenschaften einzelner Systemkomponenten, die für deren Entwicklung und anschließenden Komponententest erforderlich sind.
In diesem Fall werden zwei Komponenten beschrieben: Berechnung der Raumtemperatur und die Rollladensteuerung.[4]
Berechnung der Raumtemperatur [5]
In der Heiz- und Klimatechnik ist die genaue Berechnung der Wärmeverluste eines Gebäudes von zentraler Bedeutung, um den Energiebedarf effizient zu planen und die Raumtemperatur auf einem komfortablen Niveau zu halten. Die Transmissionswärmeverluste, die durch die Gebäudehülle auftreten, spielen hierbei eine wesentliche Rolle. Diese Verluste entstehen, wenn Wärme durch Wände, Fenster, Dächer und andere Bauteile nach außen entweicht.
Eingang
Die Eingänge sind zum einen die Hausparameter und zum anderen die Heizleistungen. Die Vollständige Liste der Eingänge ist HIER zu finden.
Logic/Berechnung
Das vorliegende Schema mit den angegeben Formeln veranschaulicht die Schritte zur Berechnung der Transmissionswärmeverluste unter Berücksichtigung verschiedener Einflussfaktoren:
mit:
Beschreibung: | Variablen: |
---|---|
Transmissionswärmeverluste | |
Fläche des i-ten Bauteils (Wand, Fenster, Dach, Bodenplatte und Türen) | |
Wärmedurchgangskoeffizient des i-ten Bauteils (Wand, Fenster, Dach, Bodenplatte und Türen) | |
Temperaturdifferenz (Innen- und Außentemperatur) |
Anschließend wird die tatsächliche Heizleistung berechnet. Diese ergibt sich durch die folgende Formel:
Die Sonnenleistung wird je nach Anforderungen und der aktuellen Raumtemperatur durch die Rollläden hinzu- oder weggeschaltet. Überschreitet die Raumtemperatur 25°C, fahren die Rollläden herunter, wodurch die Sonnenleistung auf null gesetzt wird. Daraufhin wird die Heizleistung durch einen Integrator in Wärmeenergie bzw. Heizenergie umgewandelt. Mit der Heizenergie Q kann die Temperaturdifferenz berechnet werden:
mit:
Beschreibung: | Variablen: |
---|---|
Temperaturänderung | |
Zugeführte Wärmeenergie | |
Spezifische Wärmekapazität der Luft | |
Masse der Luft |
Im Laufe der Zeit nähert sich die Temperaturdifferenz allmählich der Solltemperatur an. Nach Erreichen dieser Schwelle ändert sich die Temperatur nur noch durch äußere Einflüsse wie beispielsweise Veränderungen der Außentemperatur.
Ausgang
Die Komponente besitzt den Ausgang RSH_Raumtemperatur_Ist.
Rollladensteuerung
Die Rollläden sollen in Abhängigkeit von der Raumtemperatur automatisch geöffnet und geschlossen werden.
Eingang
Die Komponente besitzt den Eingang RSH_Raumtemperatur_Ist.
Logic/Berechnung
Der Rollladenstatus wird in Abhängigkeit der Raumtemperatur verändert. Dazu wird eine Hysterese verwendet: Steigt die Temperatur auf 25 °C, sollen die Rollläden heruntergefahren werden. Sinkt die Temperatur auf 21 °C, sollen die Rollläden wieder hochgefahren werden. Hierzu werden If-Anweisungen verwendet. In Simulink wird dies durch Schalter mit Anweisungen realisiert.
Ausgang
Der Ausgang RSH_Status_Rolladen kann zwei Zustände annehmen:
- 0: Rollläden geschlossen
- 1: Rollläden geöffnet
Umsetzung
Die Umsetzung der Komponentenspezifikation erfolgt in Matlab Simulink. Die zwei Komponenten werden, wie in der Abbildung RSH zu sehen, jeweils in einem Submodul gemäß der Komponentenspezifikation realisiert. Über einen Bus-Selector werden die relevanten Signale (siehe Tabelle 1) aus dem Bus in das RSH-Modul eingefügt und zu den jeweiligen Subsystemen geführt.
Anschließend erfolgt die Berechnung, und die daraus resultierenden Ausgangssignale werden über einen Bus-Collector in den Bus integriert, um sie den anderen Gruppen zur Verfügung zu stellen. Der Eingang wird zudem gelb und der Ausgang grün hinterlegt, was ein schnelleres Verständnis des Modells für Dritte ermöglicht. Zusätzlich werden Kommentare hinzugefügt, welche die wesentlichen Eigenschaften des gezeigten Modells widerspiegeln. Diese Kommentare sind mit den Formeln aus der Komponentenspezifikation hinterlegt, sodass jeder Schritt genau dokumentiert und leicht nachzuverfolgen ist.
Eingänge/Ausgänge | Signale |
---|---|
Eingänge | ● RSH_Status_Rollladen ● HPU_Sonnenintensitaet ● HPU_Aussentemperatur_Ist ● RSH_Raumtemperatur_Ist ● KLS_FHZ_Heiz_Kuehlleistung |
Ausgänge | ● RSH_Raumtemperatur_Ist ● RSH_Status_Rollladen |
Berechne Raumtemperatur-Ist
Das Modul besteht aus zwei Submodulen, die dynamisch arbeiten und sich an geänderte Eingabewerte anpassen. Diese Submodule berechnen zum einen die Transmissionswärmeverluste in Abhängigkeit von der Temperaturdifferenz und zum anderen die Raumtemperatur.
Berechne Transmissionswärmeverluste
Das Simulink-Modell zeigt die Berechnung der Transmissionswärmeverluste in einem Haus. Die Berechnung erfolgt durch die Summe der Produkte der Flächen und U-Werte verschiedener Bauteile des Hauses (Fenster, Türen, Wände, Bodenplatte und Dach) und der Temperaturdifferenz zwischen Innen- und Außentemperatur.
Ablauf der Berechnung (die Formel ist in der Komponentenspezifikation festgehalten):
1. Summierung der Produkte von Flächen und U-Werten:
- Die einzelnen Bauteile (Fenster, Wände, Dach, Bodenplatte und Türen) sind in einem Bus-Selector zusammengefasst.
- Für jedes Bauteil wird das Produkt aus Fläche () und U-Wert () berechnet.
- Diese Produkte werden aufsummiert, um die Gesamtsumme der Flächen-U-Werte-Produkte zu erhalten.
2. Berechnung der Temperaturdifferenz:
- Die Temperaturdifferenz () zwischen Innen- (RSH_Raumtemperatur_Ist) und Außentemperatur (HPU_Aussentemperatur) wird berechnet.
3. Berechnung der Transmissionswärmeverluste:
- Die Gesamtsumme der Flächen-U-Werte-Produkte wird mit der Temperaturdifferenz multipliziert.
- Das Ergebnis ist die Transmissionswärmeverluste () des gesamten Hauses.
Hinweis: Dieses Modell ermöglicht eine detaillierte Analyse der Wärmeverluste durch die Gebäudehülle und trägt wesentlich zur Bewertung der Energieeffizienz des Hauses bei.
Berechne aktuelle Raumtemperatur
Die Aktuelle Raumtemperatur wird basierend aus der Sonnenintensität, dem Rollladenstatus, der Heiz-/Kühlleistung, den Wärmeverlusten und den physikalischen Eigenschaften des Hauses berechnet. Jeder Block in dem Simulink Modell trägt zur Berechnung der notwenigen Parameter bei, um die aktuelle Raumtemperatur zu berechnen.
Das Simulink Modell berechnet die aktuelle Raumtemperatur wie folgt (dafür werden die Blöcke beschrieben und alle Werte werden in SI-Einheiten umgesetzt):
1. Berechnung der Wärmeleistung der Sonne durch die Fenster:
- Eingangsgrößen:
- RSH_Status_Rolladen: Gibt den Status der Rollläden an. Wenn die Rolläden heruntergefahren sind, wird die Sonnenintensität auf 0 gesetzt.
- HPU_Sonnenintensitaet: Gibt die Intensität der Sonneneinstrahlung an.
- PAR_HPU_A_Flaeche_Fenster: Parameter, der die Fläche der Fenster angibt.
- Multiplikationsblock: Der Multiplikationsblock multipliziert die Sonnenintensität mit der Fensterfläche, um die Wärmeleistung der Sonne durch die Fenster zu berechnen.
2. Berechnung der Wärmekapazität des Hauses:
- Eingangsgrößen:
- PAR_HPU_Waermekapazitaet_Luft: Parameter für die Wärmekapazität der Luft.
- PAR_HPU_Masse_Luft: Parameter für die Masse der Luft.
- Multiplikationsblock: Der Multiplikationsblock multipliziert die Wärmekapazität der Luft mit der Luftmasse, um die Gesamtwärmekapazität des Hauses zu berechnen ().
3. Berechnung der gesamten Wärmeleistung:
- Eingangsgrößen:
- KLS_FHZ_Heiz_Kuehlleistung: Gibt die Heiz- und Kühlleistung an.
- RSH_Transmissionswaermeverluste_gesamt : ibt die gesamten Wärmeverluste durch Transmission an (siehe Kapitel Berechne Transmissionswärmeverluste).
- Summationsblock: Der Summationsblock addiert die Heiz-/Kühlleistung und subtrahiert die Transmissionswärmeverluste, um die tatsächliche Wärmeleistung (gesamte Wärmeleistung) zu berechnen.
4. Umwandlung in Energie:
- Eingangsgröße: gesamte Wärmeleistung
- Integrationsblock: Der Integrationsblock (1/s) wandelt die gesamte Wärmeleistung in Energie um, da für die Berechnung der Temperaturdifferenz die Wärmeenergie () benötigt wird.
5. Berechnung Raumtemperatur_ist:
- Eingangsgröße:
- Wärmeenergie ()
- Wärmekapazität des Hauses ()
- Divisionsblock : Der Divisionsblock berechnet die Temperaturdifferenz basierend auf der umgerechneten Energie, der Wärmekapazität und der Luftmasse ().
Berechne Rollladen-Status
Die Zustandsmaschine (Abb.: Zustandsautomat für die Rollladensteuerung), die den Status des Rolladens steuert, ist abhängig von der aktuellen Raumtemperatur (RSH_Raumtemperatur_Ist). Es gibt zwei Zustände: "Hochgefahren" und "Heruntergefahren".
Im Zustand "Hochgefahren", bei dem der Rolladen geöffnet ist (RSH_Status_Rolladen = 0), wird überprüft, ob die Raumtemperatur 24°C oder höher erreicht hat. Wenn dies der Fall ist, wechselt der Zustand zu "Heruntergefahren", was bedeutet, dass der Rolladen geschlossen wird (RSH_Status_Rolladen = 1).
Im Zustand "Heruntergefahren" wird die Raumtemperatur weiter überwacht. Sobald sie auf 23°C oder darunter fällt, wechselt der Zustand zurück zu "Hochgefahren", und der Rolladen wird wieder geöffnet.
Diese Logik ermöglicht es, den Rolladen automatisch zu steuern, um die Raumtemperatur innerhalb eines gewünschten Bereichs zu halten, um somit die Sonnenintensität zu beeinflussen.
Darstellung
Das Skript dient der grafischen Darstellung relevanter Parameter des RSH-Regelstreckenmodells. Es erzeugt eine Grafik mit zwei Unterdiagrammen: Das erste zeigt die Ist-Raumtemperatur (haus.RSH_Raumtemperatur_Ist) und Ist-Außentemperatur (haus.HPU_Aussentemperatur_Ist) im Zeitverlauf (haus.t) und das zweite Unterdiagramm visualisiert den Rollladen-Status (haus.RSH_Status_Rollladen) im Zeitverlauf. Das Skript ermöglicht so die Analyse der zeitlichen Entwicklung der Raumtemperatur und des Rollladen-Status im Modell der RSH-Regelstrecke.
Ergebnis
Das Signal des Sensors weist alle 40 ms systematische Ausreisser auf (vgl. Abb. 6, rote Kurve).
Zusammenfassung
Arbeitsergebnisse
Die vollständigen Unterlagen zu der Durchführung befinden sich im SVN in folgendem Ordner:
Literaturverzeichnis
- ↑ Abb.2 - https://www.evas.de/wp-content/uploads/2011/02/v-modell.jpg
- ↑ https://svn.hshl.de/svn/BSE_SystemsDesignEng/trunk/Projekte/Haus_SS2024/Gruppen/Regelstrecke_Kismann_Scholze/V-Modell/01_Anforderungsdefinition
- ↑ https://svn.hshl.de/svn/BSE_SystemsDesignEng/trunk/Projekte/Haus_SS2024/Allg
- ↑ https://svn.hshl.de/svn/BSE_SystemsDesignEng/trunk/Projekte/Haus_SS2024/Gruppen/Regelstrecke_Kismann_Scholze/V-Modell/04_Komponentenspezifikation
- ↑ Springer Fachmedien Wiesbaden GmbH, 2024. Energieeffizientes Bauen. Taschenbuch. 18. April 2024. 334 Seiten. ISBN 978-3-658-41588-4.
→ zurück zum Hauptartikel: Systems Design Engineering - Seminaraufgabe SoSe 2023: Energiehaushalt eines Hauses