Arduino: IR-Theremin: Unterschied zwischen den Versionen
(→Demos) |
|||
(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
[[Kategorie:Arduino]] | [[Kategorie:Arduino]] | ||
[[Datei: | [[Datei:Theramin-Alexandra-Stepanoff-1930.jpg |thumb|rigth|350px|Abb. 1: Alexandra Stepanoff spielt ein Theremin für NBC Radio im Jahr 1930]] | ||
'''Autor:''' [[Benutzer:Ulrich_Schneider| Prof. Dr.-Ing. Schneider]] | {| class="wikitable" | ||
'''Modul:''' Praxismodul I | |- | ||
'''Lehrveranstaltung:''' Mechatronik, Informatikpraktikum 1, 1. Semester, Wintersemester | | '''Autor:'''|| [[Benutzer:Ulrich_Schneider| Prof. Dr.-Ing. Schneider]] | ||
|- | |||
| '''Modul:''' ||Praxismodul I | |||
|- | |||
| '''Lehrveranstaltung:'''|| Mechatronik, Informatikpraktikum 1, 1. Semester, Wintersemester | |||
|} | |||
== Fragestellungen, Begriffe und Voraussetzungen == | == Fragestellungen, Begriffe und Voraussetzungen == | ||
Zeile 18: | Zeile 22: | ||
== Lernziele== | == Lernziele== | ||
Nach Durchführung dieser Lektion | Nach Durchführung dieser Lektion | ||
* können Daten in eine Textdatei exportieren und visualisieren. | * können Daten in eine Textdatei exportieren und mit MATLAB<sup>®</sup> visualisieren. | ||
* können eine Melodie mit dem Arduino spielen. | * können eine Melodie mit dem Arduino spielen. | ||
* können Sie ein IR-Theremin bauen und entfernungsabhängig Töne spielen. | * können Sie ein IR-Theremin bauen und entfernungsabhängig Töne spielen. | ||
== Lernzielkontrolle == | == Lernzielkontrolle == | ||
# Haben Sie Messdaten mit 115200 baud seriell ausgegeben? | |||
# | # Haben Sie Messdaten mit Putty in ein Textdatei geschrieben und gespeichert? | ||
# | # Haben Sie die Messdaten mit MATLAB geladen und angezeigt? | ||
# | |||
# Wurde der Quelltext durch Header und Kommentare aufgewertet? | # Wurde der Quelltext durch Header und Kommentare aufgewertet? | ||
# Wurden jedes Programm mittels PAP geplant? | # Wurden jedes Programm mittels PAP geplant? | ||
# Wurde auf <code>magic numbers</code> verzichtet? | # Wurde auf <code>magic numbers</code> verzichtet? | ||
# Wurde die [[Medium:Programmierrichtlinie.pdf|Programmierrichtlinie]] eingehalten? | # Wurde die [[Medium:Programmierrichtlinie.pdf|Programmierrichtlinie]] eingehalten? | ||
== Tutorials == | |||
* [https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/ Arduino Referenz: <code>analogRead()</code>] | |||
* [https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/ Arduino Referenz: <code>map()</code> ] | |||
* [https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/ Arduino Referenz: <code>tone()</code>] | |||
* [https://www.arduino.cc/reference/en/language/functions/advanced-io/notone/ Arduino Referenz: <code>noTone()</code>] | |||
* [[Sharp_GP2Y0A41SK0F| Wiki: SHARP IR Abstandsensor]] | |||
* [[Einrichtung_von_PuTTY| Wiki: Anleitung für Putty]] | |||
== Demos == | |||
* [https://svn.hshl.de/svn/Informatikpraktikum_1/trunk/Arduino/ArduinoLibOrdner/ArduinoUnoR3/examples/DemoDebugTxt2MATLAB DemoDebugTxt2MATLAB] | |||
== Vorbereitung == | == Vorbereitung == | ||
Bereiten Sie sich anhand der nachfolgenden Aufgaben auf den Praktikumstermin vor. | Bereiten Sie sich anhand der nachfolgenden Aufgaben auf den Praktikumstermin vor. | ||
# Installieren Sie | # Installieren Sie den seriellen Monitor <code>Putty</code> und machen Sie sich mit der Bedienung vertraut. Nutzen Sie den Artikel [[Einrichtung_von_PuTTY| Anleitung für Putty]]. | ||
# | # Schreiben Sie ein Arduino Programm, welchen die <code>Zeit in ms</code> und <code>Distanz in cm</code> seriell ausgibt. | ||
# Visualisieren Sie Die Distanz über der Zeit in MATLAB. Nutzen Sie hierfür das [https://svn.hshl.de/svn/Informatikpraktikum_1/trunk/Demos/Arduino/DemoDebugTxt2MATLAB DemoDebugTxt2MATLAB]. | |||
# | |||
# Planen Sie die Software via PAP. | # Planen Sie die Software via PAP. | ||
# Beantworten Sie die Lernzielkontrollfragen. | # Beantworten Sie die Lernzielkontrollfragen. | ||
# Sichern Sie Ihre Unterlagen in SVN. | # Sichern Sie Ihre Unterlagen in SVN. | ||
''' | '''Arbeitsergebnisse''' in SVN: <code>Lernzielkontrolle_Termin_07.pdf</code> | ||
== Versuchsdurchführung == | == Versuchsdurchführung == | ||
=== Aufgabe | === Aufgabe 8.1: Lernzielkontrolle === | ||
Präsentieren Sie Prof. Schneider das Ergebnis der Lernzielkontrolle. | Präsentieren Sie Prof. Schneider das Ergebnis der Lernzielkontrolle. | ||
'''Arbeitsergebnisse''' in SVN: <code> | '''Arbeitsergebnisse''' in SVN: <code>Lernzielkontrolle_Termin_08.pdf</code> | ||
---- | |||
=== Aufgabe | === Aufgabe 8.2: Debugging === | ||
Arduino-Aufgabe | '''Arduino-Aufgabe''' | ||
# Messen Sie die Zeit in Millisekunden mit dem Befehl <code>millis()</code> | # Messen Sie die Zeit in Millisekunden mit dem Befehl <code>millis()</code> | ||
# Messen Sie die Entfernung mit und ohne Median-Filter. | # Messen Sie die Entfernung mit und ohne Median-Filter. | ||
Zeile 101: | Zeile 69: | ||
# Nutzen Sie Putty als seriellen Monitor und speichern Sie die Daten in der Datei <code>Debug.txt</code>. | # Nutzen Sie Putty als seriellen Monitor und speichern Sie die Daten in der Datei <code>Debug.txt</code>. | ||
'''Nützliche Befehle''': <code>millis(), Serial.begin(), Serial.println(), analogRead()</code> | '''Nützliche Befehle''': <code>millis(), Serial.begin(), Serial.println(), analogRead()</code> | ||
---- | |||
MATLAB-Aufgabe | '''MATLAB-Aufgabe''' | ||
# Nutzen Sie das Demo <code>startLeseDebug.m</code> und lesen Sie die Daten aus der Datei <code>Debug.txt</code>. | # Nutzen Sie das Demo <code>startLeseDebug.m</code> und lesen Sie die Daten aus der Datei <code>Debug.txt</code>. | ||
# Stellen Sie die Entfernung ohne Median Filter über der Zeit dar (<code>plot(Zeit,Messwerte,'r.-')</code>). | # Stellen Sie die Entfernung ohne Median Filter über der Zeit dar (<code>plot(Zeit,Messwerte,'r.-')</code>). | ||
# Stellen Sie die Entfernung mit Median Filter über der Zeit dar (<code>plot(Zeit,median,'b-')</code>). | # Stellen Sie die Entfernung mit Median Filter über der Zeit dar (<code>plot(Zeit,median,'b-')</code>). | ||
# Ergänzen Sie eine Legende (<code>legend("Messwerte", Median-Filter | # Ergänzen Sie eine Legende (<code>legend("Messwerte", "Median-Filter")</code>). | ||
# Beschriften Sie die Achsen. | # Beschriften Sie die Achsen. | ||
Zeile 118: | Zeile 86: | ||
'''Demo:''' [https://svn.hshl.de/svn/Informatikpraktikum_1/trunk/Demos/Arduino/DemoDebugTxt2MATLAB DemoDebugTxt2MATLAB] | '''Demo:''' [https://svn.hshl.de/svn/Informatikpraktikum_1/trunk/Demos/Arduino/DemoDebugTxt2MATLAB DemoDebugTxt2MATLAB] | ||
</div> | </div> | ||
---- | |||
=== Aufgabe | === Aufgabe 8.3: Töne erzeugen === | ||
# Folgen Sie der [https://funduino.de/nr-08-toene-erzeugen Anleitung zur Ausgaben von Tönen]. | # Folgen Sie der [https://funduino.de/nr-08-toene-erzeugen Anleitung zur Ausgaben von Tönen]. | ||
# Mit einem passiven Lautsprecher sollen unterschiedliche Töne und eine Melodie erzeugt werden. | # Mit einem passiven Lautsprecher sollen unterschiedliche Töne und eine Melodie erzeugt werden. | ||
Zeile 125: | Zeile 94: | ||
'''Nützliche Befehle''': <code>tone(), delay(), noTone(), pinMode(), digitalRead(), if()</code> | '''Nützliche Befehle''': <code>tone(), delay(), noTone(), pinMode(), digitalRead(), if()</code> | ||
'''Arbeitsergebnisse''' in SVN: <code> | '''Arbeitsergebnisse''' in SVN: <code>spieleMelodie.ino</code> | ||
<div class="mw-collapsible mw-collapsed"> | <div class="mw-collapsible mw-collapsed"> | ||
'''Lösung:''' [https://funduino.de/nr-08-toene-erzeugen | '''Lösung:''' [https://funduino.de/nr-08-toene-erzeugen Nr.08 – Töne erzeugen] | ||
</div> | </div> | ||
---- | |||
=== Aufgabe | === Aufgabe 8.4: IR-Theremin === | ||
Ein Theremin ist ein Instrument, das Töne abhängig von den Bewegungen des Musizierenden erzeugt. Die Titelmelodie von Star Treck wurde beispielsweise damit gespielt. Das Theremin detektiert die Hände im Verhältnis zu zwei Antennen. Diese Antennen sind mit einem analogen Schaltkreis verbunden und erzeugen die Musik. Eine Antenne regelt die Frequenz der Töne und die Andere die Lautstärke. Diese Aufgabe emuliert das Theremin indem die Funktion <code>tone()</code> verwendet wird und die vom IR-Sensor gemessenen Abstände die Tonfrequenzen manipulieren. Lesen Sie die Entfernung wie in den Aufgaben zuvor über <code>analogRead()</code> ein. Schließen Sie den aktiven Lautprecher (Piezo-Lautsprecher) an Pin 8 an. | Ein Theremin ist ein Instrument, das Töne abhängig von den Bewegungen des Musizierenden erzeugt. Die Titelmelodie von Star Treck wurde beispielsweise damit gespielt. Das Theremin detektiert die Hände im Verhältnis zu zwei Antennen. Diese Antennen sind mit einem analogen Schaltkreis verbunden und erzeugen die Musik. Eine Antenne regelt die Frequenz der Töne und die Andere die Lautstärke. Diese Aufgabe emuliert das Theremin indem die Funktion <code>tone()</code> verwendet wird und die vom IR-Sensor gemessenen Abstände die Tonfrequenzen manipulieren. Lesen Sie die Entfernung wie in den Aufgaben zuvor über <code>analogRead()</code> ein. Schließen Sie den aktiven Lautprecher (Piezo-Lautsprecher) an Pin 8 an. | ||
# Erzeugen Sie Töne abhängig von den Messwerten des Sharp IR-Entfernungssensors. | # Erzeugen Sie Töne abhängig von den Messwerten des Sharp IR-Entfernungssensors. | ||
Zeile 146: | Zeile 115: | ||
</div> | </div> | ||
---- | |||
=== Aufgabe | === Aufgabe 8.5: Nachhaltige Doku === | ||
Sichern Sie alle Ergebnisse mit beschreibendem Text (<code>message</code>) in SVN. | Sichern Sie alle Ergebnisse mit beschreibendem Text (<code>message</code>) in SVN. | ||
* Wurden die Regeln für den Umgang mit SVN eingehalten? | * Wurden die Regeln für den Umgang mit SVN eingehalten? | ||
Zeile 157: | Zeile 126: | ||
'''Arbeitsergebnis''' in SVN: <code>SVN Log</code> | '''Arbeitsergebnis''' in SVN: <code>SVN Log</code> | ||
== Videos == | == Videos == | ||
Zeile 199: | Zeile 140: | ||
---- | ---- | ||
→ zurück zum Hauptartikel: [[ | → Termine [[Einführungsveranstaltung Informatikpraktikum 1|0]] [[Einarbeitung_in_die_Versionsverwaltung_SVN|1]] [[Einstieg_in_die_Welt_des_Arduino|2]] [[Arduino: Taster auswerten und LEDs ansteuern|3]] [[Arduino:_Sensoren_einlesen|4]] [[Arduino:_Infrarotsensor_einlesen|5]] [[Arduino:_Infrarotsensor_entstören|6]] [[Arduino:_Programmier-Challenge_I_WS_24/25|7]] [[Arduino:_IR-Theremin|8]] [[Arduino:_Aktoren|9]] [[Arduino:_LCD_Display_mit_I2C_Schnittstelle|10]] [[Arduino:_Ultraschall_Entfernungsmessung|11]] [[Arduino:_Ultraschallsensor_entstören|12]] [[Arduino:_Temperaturmessung_mit_NTC_und_PTC|13]] [[Arduino:_Programmier-Challenge_II_WS_WS_24/25|14]]<br> | ||
→ zurück zum Hauptartikel: [[Arduino_Praxiseinstieg_WS_24/25|Arduino Praxiseinstieg]] |
Aktuelle Version vom 13. November 2024, 10:09 Uhr
Autor: | Prof. Dr.-Ing. Schneider |
Modul: | Praxismodul I |
Lehrveranstaltung: | Mechatronik, Informatikpraktikum 1, 1. Semester, Wintersemester |
Fragestellungen, Begriffe und Voraussetzungen
Fragestellungen
Bislang haben Sie sich umfangreich mit dem Sharp IR Abstandssensor beschäftigt. Sie haben analoge Spannungswerte digitalisiert, Störungen entfernt und mittels Kennlinie die Distanz berechnet. In dieser Lektion kommt der kalibrierte Sensor als Musikinstrument zur Anwendung.
Eingeführte Begriffe und Konzepte
In den vorherigen Lektionen wurde der serielle Monitor und Plotter der Arduino IDE zu Datenvisualisierung verwendet. In dieser Lektion werden die Daten in eine Textdatei geschrieben und mit MATLAB visualisiert. Zusätzlich wird der passive Lautsprecher verwendet, um eine Melodie zu spielen. Als Musikinstrument wird ein Theremin gebaut, welches abhängig vom gemessenen Abstand die Tonfrequenz variiert.
Vorausgesetzte Kenntnisse aus vorangegangenen Lektionen
- Messung der Entfernung mit einem IR-Sensor
- Ansteuerung des Piezo Lautsprechers
Lernziele
Nach Durchführung dieser Lektion
- können Daten in eine Textdatei exportieren und mit MATLAB® visualisieren.
- können eine Melodie mit dem Arduino spielen.
- können Sie ein IR-Theremin bauen und entfernungsabhängig Töne spielen.
Lernzielkontrolle
- Haben Sie Messdaten mit 115200 baud seriell ausgegeben?
- Haben Sie Messdaten mit Putty in ein Textdatei geschrieben und gespeichert?
- Haben Sie die Messdaten mit MATLAB geladen und angezeigt?
- Wurde der Quelltext durch Header und Kommentare aufgewertet?
- Wurden jedes Programm mittels PAP geplant?
- Wurde auf
magic numbers
verzichtet? - Wurde die Programmierrichtlinie eingehalten?
Tutorials
- Arduino Referenz:
analogRead()
- Arduino Referenz:
map()
- Arduino Referenz:
tone()
- Arduino Referenz:
noTone()
- Wiki: SHARP IR Abstandsensor
- Wiki: Anleitung für Putty
Demos
Vorbereitung
Bereiten Sie sich anhand der nachfolgenden Aufgaben auf den Praktikumstermin vor.
- Installieren Sie den seriellen Monitor
Putty
und machen Sie sich mit der Bedienung vertraut. Nutzen Sie den Artikel Anleitung für Putty. - Schreiben Sie ein Arduino Programm, welchen die
Zeit in ms
undDistanz in cm
seriell ausgibt. - Visualisieren Sie Die Distanz über der Zeit in MATLAB. Nutzen Sie hierfür das DemoDebugTxt2MATLAB.
- Planen Sie die Software via PAP.
- Beantworten Sie die Lernzielkontrollfragen.
- Sichern Sie Ihre Unterlagen in SVN.
Arbeitsergebnisse in SVN: Lernzielkontrolle_Termin_07.pdf
Versuchsdurchführung
Aufgabe 8.1: Lernzielkontrolle
Präsentieren Sie Prof. Schneider das Ergebnis der Lernzielkontrolle.
Arbeitsergebnisse in SVN: Lernzielkontrolle_Termin_08.pdf
Aufgabe 8.2: Debugging
Arduino-Aufgabe
- Messen Sie die Zeit in Millisekunden mit dem Befehl
millis()
- Messen Sie die Entfernung mit und ohne Median-Filter.
- Geben Sie die Zeit und Messdaten im seriellen Monitor aus (Format: Zeit in ms;d in cm; Median-Filter in cm <LF>).
- Nutzen Sie Putty als seriellen Monitor und speichern Sie die Daten in der Datei
Debug.txt
.
Nützliche Befehle: millis(), Serial.begin(), Serial.println(), analogRead()
MATLAB-Aufgabe
- Nutzen Sie das Demo
startLeseDebug.m
und lesen Sie die Daten aus der DateiDebug.txt
. - Stellen Sie die Entfernung ohne Median Filter über der Zeit dar (
plot(Zeit,Messwerte,'r.-')
). - Stellen Sie die Entfernung mit Median Filter über der Zeit dar (
plot(Zeit,median,'b-')
). - Ergänzen Sie eine Legende (
legend("Messwerte", "Median-Filter")
). - Beschriften Sie die Achsen.
Nützliche Befehle: hold on, plot, yLabel, legend
Arbeitsergebnisse in SVN: schreibeDebugDatei.ino, Debug.txt, leseDebugDatei.m
Tutorial: Anleitung für Putty
Demo: DemoDebugTxt2MATLAB
Aufgabe 8.3: Töne erzeugen
- Folgen Sie der Anleitung zur Ausgaben von Tönen.
- Mit einem passiven Lautsprecher sollen unterschiedliche Töne und eine Melodie erzeugt werden.
Nützliche Befehle: tone(), delay(), noTone(), pinMode(), digitalRead(), if()
Arbeitsergebnisse in SVN: spieleMelodie.ino
Lösung: Nr.08 – Töne erzeugen
Aufgabe 8.4: IR-Theremin
Ein Theremin ist ein Instrument, das Töne abhängig von den Bewegungen des Musizierenden erzeugt. Die Titelmelodie von Star Treck wurde beispielsweise damit gespielt. Das Theremin detektiert die Hände im Verhältnis zu zwei Antennen. Diese Antennen sind mit einem analogen Schaltkreis verbunden und erzeugen die Musik. Eine Antenne regelt die Frequenz der Töne und die Andere die Lautstärke. Diese Aufgabe emuliert das Theremin indem die Funktion tone()
verwendet wird und die vom IR-Sensor gemessenen Abstände die Tonfrequenzen manipulieren. Lesen Sie die Entfernung wie in den Aufgaben zuvor über analogRead()
ein. Schließen Sie den aktiven Lautprecher (Piezo-Lautsprecher) an Pin 8 an.
- Erzeugen Sie Töne abhängig von den Messwerten des Sharp IR-Entfernungssensors.
- Kalibrieren Sie die Zuordnung von Entfernung zu Frequenzen mit dem Der
map()
-Befehl. - Spielen Sie eine Melodie.
Nützliche Befehle: tone(), delay(), noTone(), analogRead(), map()
Arbeitsergebnisse in SVN: IR_Theremin.ino
Aufgabe 8.5: Nachhaltige Doku
Sichern Sie alle Ergebnisse mit beschreibendem Text (message
) in SVN.
- Wurden die Regeln für den Umgang mit SVN eingehalten?
- Wurde die Programmierrichtlinie eingehalten?
- Wurde nachhaltig dokumentiert?
- Haben die Programme einen Header?
- Wurden der Quelltext umfangreich kommentiert?
- Wurden die PAPs erstellt und abgelegt? Passen die PAPs 100% zum Programm?
Arbeitsergebnis in SVN: SVN Log
Videos
Literatur
- Brühlmann, T.: Arduino Praxiseinstieg. Heidelberg: mitp, 4. Auflage 2019. ISBN 978-3-7475-0056-9. URL: HSHL-Bib, O'Reilly-URL
- Brühlmann, T.: Sensoren im Einsatz mit Arduino. Frechen: mitp Verlag, 1. Auflage 2017. ISBN: 9783958451520. URL: HSHL-Bib, O'Reilly
- Snieders, R.: ARDUINO lernen. Nordhorn: 8. Auflage 2022. URL: https://funduino.de/vorwort
- Schneider, U.: Programmierrichtlinie für für die Erstellung von Software in C. Lippstadt: 1. Auflage 2022. PDF-Dokument (212 kb)
- Sharp: GP2Y0A41SK0F. URL: [1]. Datenblatt (858 kb)
→ Termine 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
→ zurück zum Hauptartikel: Arduino Praxiseinstieg