Legosortiermaschine Sortierung: Unterschied zwischen den Versionen

Aus HSHL Mechatronik
Zur Navigation springen Zur Suche springen
 
(29 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 6: Zeile 6:
Die Sortiereinheit der Legosortiermaschine stellt einen der drei wichtigen Bereiche dar. Aufgabe der Sortiereinheit ist die Übernahme eines Legoteils von der Bildverarbeitung und der physikalische Transport in  das richtige Fach.  
Die Sortiereinheit der Legosortiermaschine stellt einen der drei wichtigen Bereiche dar. Aufgabe der Sortiereinheit ist die Übernahme eines Legoteils von der Bildverarbeitung und der physikalische Transport in  das richtige Fach.  


Nach einer ausführlichen Ist-Analyse im letzten Semester wurde beschlossen, die Einheit von Grund auf neu zu konzipieren. Dafür wurde bereits ein umfangreiches CAD-Modell erstellt. Ziel in diesem Semester ist die Überprüfung und Umsetzung des Konzeptes. Außerdem wird die Servoansteuerung getestet und überarbeitet. Weitere Teilaufgaben des Teilteams Sortierung sind die Inbetriebnahme der gesamten Anlage, eine Gefährdungsbeurteilung sowie Komponententests neu erstellter Arduino Software. Die Arbeitsergebnisse sind im Pflichtenheft verlinkt.


 
= Anforderungen und Ziele im Wintersemester 2018/2019 =
 
 
 
 
 
 
 
= Anforderungen und Ziele im Sommersemester 2018 =


Im Pflichtenheft wurden folgende Aufgaben festgehalten, welche im SS2018 bearbeitet werden sollen:
Im Pflichtenheft wurden folgende Aufgaben festgehalten, welche im SS2018 bearbeitet werden sollen:
Zeile 25: Zeile 16:
!Anforderungstitel
!Anforderungstitel
!Beschreibung der Spezifikation
!Beschreibung der Spezifikation
!Arbeitsergebnisse
|-
| 165
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Fertigung der Teile mit Hilfe von 3D Drucker und Laserschneidsystem (Hamm)
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams/Sortierung/CAD-Dateien/Stückliste_Sortiereinheit.xls Stückliste]
|-
|-
| 161
| 166
| REQ10.2320
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Sortierung der Legoteile in die Kästen
| Kontaktaufnahme und Besprechung mit HSHL Hamm
| Zusammenbau
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Komponententest_Sortiereinheit_Klappensteuerung.docx Funktionsprüfprotokoll]
|-
|-
| 162
| 166.1
| REQ10.2320
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Sortierung der Legoteile in die Kästen
| Kontrolle der SolidWorks Komponenten
| 3D-Druck-Teile kontrollieren und ggfs. entgraten
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams/Sortierung/CAD-Dateien/Stückliste_Sortiereinheit.xls Stückliste]
|-
|-
| 163
| 166.11
| REQ10.2320
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Sortierung der Legoteile in die Kästen
| Umwandeln der ".sldprt" Dateien in ".dxf" Format
| Segmentierte Klappen und Anschläge verbinden und kleben
|[https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams/Sortierung/CAD-Dateien/Stückliste_Sortiereinheit.xls Stückliste]
|-
|-
| 164
| 166.2
| REQ10.2320
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Sortierung der Legoteile in die Kästen
| Anpassen der ".dxf" Dateien für den LaserCutter (via IncScape)
| LaserCutter Teile kontrollieren und gegebenenfalls entgraten
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams/Sortierung/CAD-Dateien/Stückliste_Sortiereinheit.xls Stückliste]
|-
|-
| 165
| 166.3
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Wellen an die Testklappe
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Montageliste.docx Montageliste]
|-
| 166.4
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Grundgerüst montieren
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Montageliste.docx Montageliste]
|-
| 166.5
| REQ10.2320
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Sortierung der Legoteile in die Kästen
| Fertigung der Teile mit Hilfe von 3D Drucker und Laserschneidsystem (Hamm)
| Eine Klappe testweise einbauen und auf Funktion prüfen
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Montageliste.docx Montageliste]
|-
|-
| 166.2
| 166.6
| REQ10.2320
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Sortierung der Legoteile in die Kästen
| LaserCutter Teile kontrollieren und gegebenenfalls entgraten
| Verschrauben der Acrylglasplatten
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Montageliste.docx Montageliste]
|-
|-
| 166.3
| 166.61
| REQ10.2320
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Sortierung der Legoteile in die Kästen
| Wellen an die Klappen kleben
| Erstellen und Anbringen einer Stütze für die Einführung der Teile
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Montageliste.docx Montageliste]
|-
|-
| 166.7
| 166.7
| REQ10.2320
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Sortierung der Legoteile in die Kästen
| PWM-Signal prüfen
| Verkleben der Acrylglasplatten
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Montageliste.docx Montageliste]
|-
|-
| 166.8
| 166.8
| REQ10.2320
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Sortierung der Legoteile in die Kästen
| Funktionalität der Servomotoren herstellen
| Weitere Klappen des Mitteltowers fertigstellen
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Montageliste.docx Montageliste]
|-
|-
| 166.9
| 166.9
Zeile 75: Zeile 94:
| Sortierung der Legoteile in die Kästen
| Sortierung der Legoteile in die Kästen
| Steckverbindung von Sortiereinheit und Schaltschrank
| Steckverbindung von Sortiereinheit und Schaltschrank
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams/Sortierung/Servomotoren/Dokumente/Sub-D_Stecker_Belegung.docx Pinbelegung]
|-
|-
| 170
| 160
| REQ10.2321
| REQ10.2320
| Beschriftung für die Sortierung der Legoteile in die Kästen
| Sortierung der Legoteile in die Kästen
| Fächer mit Aufklebern des Inhalts markieren
| Konzept aus WS17 umsetzen
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Komponententest_Sortiereinheit_Klappensteuerung.docx Funktionsprüfprotokoll]
|-
|-
| 500.4
| 130
| REQ10.2380
| REQ10.2320
| Komponententests
| Sortierung der Legoteile in die Kästen
| Für die Entwickelte Software bzw. Steuer- und Regelungsalgorithmen müssen geeignete Komponententests durchgeführt und geeignet dokumentiert werden
| 1. Erkannt: Automatische Feinsortierung in gesonderte Fächer 2. Nicht erkannt: Ausschuss in seperates Fach 3. Erkannt Fremdteil: Ausschuss in seperates Fach
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Funktionsprüfprotokoll.docx Funktionsprüfprotokoll]
|-
| 131
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Überprüfung ob die Fächer richtig angesteuert werden. Teilkontrolle in den Kästen
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Komponententest_Sortiereinheit_Klappensteuerung.docx Funktionsprüfprotokoll]
|-
| 132
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Überprüfung ob alle nicht erkannten Teile in einem seperaten Fach liegen
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Komponententest_Sortiereinheit_Klappensteuerung.docx Funktionsprüfprotokoll]
|-
| 133
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Fremdteilsortierung kontrollieren
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/22_Pruefprotokolle/Komponententest_Sortiereinheit_Klappensteuerung.docx Funktionsprüfprotokoll]
|-
| 134
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Ansteuerung der Klappen anpassen
| [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/SRC\Arduino\Serielle_Steuerung\Serielle_Steuerung.ino Arduino Programm]
|-
| 135
| REQ10.2320
| Sortierung der Legoteile in die Kästen
| Justieren der mechanischen Teile (Einstellen der Klappen)
| [http://193.175.248.52/wiki/index.php/Legosortiermaschine_Sortiereinheit_Anfertigung#Testaufbau Wiki Artikel]
|}
|}


='''Konstruktionsplanung'''=
='''Konstruktionsplanung'''=


Zum besseren Verständnis werden die Teilkonzepte der letzten Semester noch einmal aufgegriffen und im folgenden Abschnitt unter der Konstruktionsplanung erläutert.
Zum besseren Verständnis werden die Teilkonzepte der letzten Semester noch einmal aufgegriffen und im folgenden Abschnitt unter der Konstruktionsplanung erläutert. Der Inhalt der Planung wurde vom Vorsemester erledigt und gehört nicht zu den Arbeitsergebnissen des Sommersemesters 2018. Die Konstruktionsplanung ist unter folgendem Unterartikel zu finden:  
 
Teilkonzepte der Sortiereinheit für die Legoteilzählmaschine:
*Stellerbefestigung
*Drehmomentübertragung
*Vorsortierung
*Rückführung
*Abbremsung
*Betriebssicherheit
 
Die Konstruktionsplanung ist unter folgendem Unterartikel zu finden:  
=== [http://193.175.248.52/wiki/index.php/Konstruktionsplanung_Legosortiermaschine Konstruktionsplanung Legosortiermaschine] ===
=== [http://193.175.248.52/wiki/index.php/Konstruktionsplanung_Legosortiermaschine Konstruktionsplanung Legosortiermaschine] ===


='''Anfertigung der Sortiereinheit'''=
='''Anfertigung der Sortiereinheit'''=


Die Sortiereinheit besteht aus 3D-Durck Teilen und Acrylglasplatten. Diese sind als CAD-Modelle in SVN abgelegt und müssen vorerst überprüft werden.
Der Zusammenbau der Sortiereinheit ist unter folgendem Unterartikel zu finden:  
 
=== [http://193.175.248.52/wiki/index.php/Legosortiermaschine_Sortiereinheit_Anfertigung Anfertigung der Sortiereinheit] ===
 
==Prüfen des Konzepts==
 
Bevor die Einzelteile der Sortieranlage gefertigt werden konnten musste das Gesamtkonzept und die Maßgenauigkeit geprüft werden.
Dazu wurde eine Überprüfung jeder einzelnen Komponente im CAD-Modell vorgenommen es wurden die Maße, Passstellen, Verbindungsstücke und Materialstärken kontrolliert.
 
Ebenfalls wurde die Baugruppe zur Hilfe genommen und damit konnten mögliche Kollisionen ausgeschlossen werden. Das größte zu sortierende Legoteil passt demnach durch alle Schächte und wird an keiner Stelle eingeklemmt. Aus diesem Grund werden die CAD-Modelle ab diesem Zeitpunkt als in Ordnung angenommen und die weiteren Schritte eingeleitet.
 
 
==Acrylglasplatten==
 
Aufgrund des beschränkten Fertigungsraumes, sowohl des 3D-Druckers als auch des Lasercutters, mussten große Bauteile teils mehrfach getrennt und in sich steckbar sowie stabil, umkonstruiert werden.
Alle 37 Bauteile, die aus Acrylglas gefertigt werden sollen, wurden bereits in [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams/Sortierung/CAD-Dateien/Acrylglas-Teile.SLDASM SolidWorks] so angeordnet, dass möglichst wenig Platten zur Herstellung aller Bauteile von Nöten sind. (vgl. 'Abb. 7')
 
 
[[Datei:Legosortiermaschine_Sortiereinheit_Acrylglas-Teile.PNG|700px|thumb|zentriert|Abb. 7: Acrylglasteile]]
 
 
 
 
[[Datei:InkScape.jpg|200px|thumb|rechts|Abb. 8: IncScape Bearbeitung]]
===Absprache mit LaserCutter Hamm===
 
Die Fertigung der Acrylglasplatten übernimmt das Prototyping Labor mit einem LaserCutter der Hochschule Hamm-Lippstadt am Standort Hamm. Dazu wurde ein Kontakt mit den zuständigen Betreuer hergestellt und es wurden weitere Informationen zu dem LaserCutter eingeholt.  Hierbei wurde in der [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams/Sortierung/CAD-Dateien/Stückliste_Sortiereinheit.xls Stückliste]festgestellt, dass Teile zu groß waren. Nach einer genaueren Kontrolle der CAD-Modelle stellte sich jedoch heraus, dass hier die Maße der zusammengestzen Baugruppen und nicht die der einzelnen Teile eingetragen wurden. Diese Fehler wurden behoben.
 
Eine weitere Forderung war zudem ein spezielles Dateiformat der CAD-Modelle für den LaserCutter. Die CAD-Modelle wurden von dem ".SLDPRT"-Format in Vektorgrafiken(.dxf) umgewandelt, damit diese an die zuständigen wissenschaftlichen Mitarbeiter (Ansprechpartnerin Herr Björn Schmidt) in Hamm für den Lasercutter geschickt werden konnten.
 
Diese Umwandlung der SolidWorks Dateien stellte das Programm leider nicht zur Verfügung, weshalb das kostenfrei nutzbare Programm [https://inkscape.org/de/ Inkscape] zu Hilfe geholt werden musste.
 
Hierzu wurden die SolidWorks Dateien importiert, Schneidelinien rot(ff0000) und 0,01 mm stark sein, sowie die sämtliche Beschriftungen entfernt. Anschließend wurde die Datei im bereits genannten '.dxf'-Format gespeichert.
Damit die Übersicht nicht verloren ging, welche Dateien schon umgewandelt wurden, musste in der [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams/Sortierung/CAD-Dateien/Stückliste_Sortiereinheit.xls Stückliste] in der alle Bauteile eingetragen sind eine Spalte ergänzt werden in der abgehakt wurde welche Dateien schon vorhanden sind.
 
In Abbildung 8 ist eine Bearbeitung eines Teiles mit der Software InkScape zu sehen:
 
 
Die IncScape Dateien wurden in SVN abgelegt: [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams/Sortierung/CAD-Dateien/Laser_Cutter_Dateien/InkScape/ IncSkape-Dateien].
 
===Bestellen der Materialien===
 
Eine Anforderung des Labors ist eine maximale Materialgröße von 300mm x 600mm. Daraufhin wurde die [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams/Sortierung/CAD-Dateien/Stückliste_Sortiereinheit.xls Stückliste], in welcher alle Teile mit ihren Maßen beschrieben sind, überprüft.
Anschließend wurde die Stückliste auf Anzahl der Lasercutterteile in Hinblick auf der benötigten Stärke durchgeschaut.
 
Es werden 19 Platten â 3mm Stärke und 30 Platten â 5mm Platten benötigt. Mit diesen Informationen wurde eine Vielzahl von Angeboten verglichen und der günstigste Anbieter ausgewählt.
Die Bill of Material wurde an Prof. Dr. Göbel weitegeiletet, sodass die Materialien bestellt wurden. Die Lieferung erfolgte direkt an das Prototyping Labor in Hamm.
 
Die Bestelliste ist in SVN abgelegt: [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/08_Beschaffung/2018/ BOM Plexiglas]
 
===Musterfertigung===
 
Es ist wichtig, dass der Laser genau arbeitet und die Schnittlinien eingehalten werden. Die Steckverbindungen dürfen nicht zu locker und nicht zu fest sitzen. Aus diesem Grund wurden nicht direkt alle LaserCutter Teile in Auftrag gegeben, sondern erst einmal nur zwei Teile. Mit diesen wurde ein Probeaufbau realisiert indem die beiden Platten (eine Außenwand des Towers) zusammengesteckt wurden. In Abbildung 9 ist zu erkennen, dass Teil A und Teil B die Passbedingungen erfüllen und wie ein Puzzle zusammengesetzt werden können.
 
 
[[Datei:Lasercutterteil_Probe.JPG|500px|thumb|zentriert|Abb. 9: LaserCutter Muster]]
 
 
Auffällig hierbei war es, dass ein geringes Spiel vorhanden ist und die deshalb Teile vorraussichtlich, wie geplant, zusätzlich verklebt werden müssen. Dafür ist eine Nacharbeit (z.B. Entgraten) nicht erforderlich.
 
Aufgrund der Passgenauigkeit wurden die restlichen Teile bei dem Prototyping Labor in Hamm bestellt.
 
==3D-Druckteile==
 
===Prüfen und übergeben===
 
Bei dem Prüfen des Konzeptes wurden bereits die CAD-Modelle kontrolliert. Für die Sortiereinheit werden 93 zu druckende 3D-Druckteile benötigt.
Diese wurden mit der Stückliste zusammen an den wissenschaftlichen Mitarbeiter Ilya Raza übergeben. Auch hier wurden Probeteile gefertigt, damit ein Testaufbau mit den Acrylglasplatten realisiert werden konnte. Dafür wurden eine Klappe und zwei seitliche Anschläge abgeholt und weiterverarbeitet. Aufgrund des 3D-Drucks sind die gedruckten Teile nachzuarbeiten. Wie in Abbildung 10 zu erkennen, muss das Stützmaterial aus den Hohlräumen sowie die Rafts entfernt werden. Desweiteren ist eine Entgratung notwendig.
 
 
[[Datei:3D-Druckteile_Bearbeitung.JPG|600px|thumb|zentriert|Abb. 10: 3D-Druckteile Nachbearbeitung]]
 
 
===Testaufbau===
 
Nachdem nun Probeteile der Acrylglasplatten und 3D-Teile gerfertigt und nachbearbeitet wurden, wird ein Testaufbau eines Teiles der Sortiereinheit realisiert. Eine Klappe besteht dabei aus zwei zusammengesetzten 3D-Druckteilen. Die Steckverbinding dieser Teile erwies sich als schwierig. Eine sehr genaue und zeitintensive Nacharbeit der 3D-Druckteile ist deshalb erforderlich.
 
Der gesamte Testaufbau besteht aus einer Verbindung einer Klappe mit zwei Anschlägen (3D-Druckteile) mit einer zusammengesteckten Außenwand (Acrylglas). In Abbildung 11 ist dieser Testaufbau zu sehen.
 
 
[[Datei:Testaufbau_Klappe.PNG|600px|thumb|zentriert|Abb. 11: Testaufbau einer Klappe]]
 
 
Ergebnisse aus dem Testaufbau sind:
 
* sehr genaue Nachbearbeitung der 3D-Druckteile erforderlich
* kleben der segmentierten 3D-Druckteile und Acrylglasplatten notwendig
* keine Nachbearbeitung der Acrylglasplatten nötig
* Steckverbindungen sind passgenau
 
Die restlichen 3D-Druckteile befinden sich in der Fertigung und werden voraussichltich im September 2018 zur Verfügung stehen.
 
==Servomotoren==
 
Die Servomotoren sind für die Bewegung der Klappen vorgesehen. Im der gesamten Sortiereinheit werden 11 Servomotoren verwendet. Angesteuert werden diese über die PWM-Anschlüsse des Arduinos und einer Steuerleitung. Die Servos müssen nach einem vorher definierten Winkel verstellt werden können. Als Endergebnis soll die automatische Sortierung der Legoteile in die Sortierkisten über die Klappen erfolgen. Aufgrund von Zeitmangel aus dem letzten Semester konnten die Motoren allerdings nicht richtig angesteuert werden. Dieses zeigte sich durch "zucken" oder Stillstand einiger Motoren. 
 
Ausgangszustand:
* 10 Meter Signalkabel
* "Lötkugel" für die Spannungsversorgung
* Lötverbindungen an den Steckern können sich leicht berühren (Kurzschlussgefahr)
 
===Aufbau einer Testplatine===
 
Um Störeinflüsse der Leitungen zu den Servomotoren zu untersuchen wurde eine Platine, wie in Abbildung 12 zu sehen, mit passenden Steckern angefertigt und direkt über ca. 30cm lange Leitungen an den Arduino angeschlossen. Durch die Platine können sich die einzelnen Steckerkontakte nicht mehr berühren. Die Steckverbindungen zu den Servos können so erleichtert verwendet werden ohne Kurzschlüsse zu verursachen.
Seitlich von den Steckkontakten sind auf der Platine die Signalleitungen herausgeführt, die an die Steuerelektronik verbunden werden können.
 
[[Datei:Servomotoren_Testaufbau.jpg|600px|thumb|zentriert|Abb. 12: Testplatine für die Servos]]
 
Um das 10m Signalkabel als Fehlerquelle auszuschließen wurde die Testplatine direkt an den Arduino im Schaltschrank angeschlossen.
Nach dem Erstellen und anschließen der Platine an den Arduino wurde das PWM-Signal am Ausgangspin direkt gemessen und mit dem Signal an der Platine verglichen. Da das Signal an beiden Messstellen identisch war und einen ausgeprägten Rechteckimpuls darstellte ist der Grund für die Störungen und des nicht Funktionierens in der Programmierung zu suchen.
 
 
===Ansteuerung der Servos===
 
 
Eine Recherche hat ergeben, dass der Befehl Servo.write eine falsche Pulsweite ausgibt. Diese Pulsweite kann über die Bibliothek Servo.h verändert werden.
Die Winkelstellung der Servos erfolgt anschließend über eine Pulslänge.
 
Einige Servos (z.B. wie das verwendete Modell „MC-410“) benötigen zur Ansteuerung eine andere Pulslänge als die Standardeinstellung in Arduino.
Im folgendem Beispielprogramm (Abbildung 13) ist der Test eines Servos mit angepasster Pulsweitenbreite implementiert worden. Dieses Programm dient zum Test eines einzigen Servomotoren und ist unter folgendem Link zu finden: [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/SRC/Arduino/Servoansteuerung/Servotest_11.06.2018/ Servotest]
 
[[Datei:Servo Ansteuerung Test.PNG|500px|thumb|zentriert|Abb. 13: Testprogramm Servos]]
 
Die Erklärung wie die Pulsweite angepasst werden kann ist unter folgendem Link zu finden:
[http://www.mintgruen.tu-berlin.de/robotikWiki/doku.php?id=skript:servos Pulsweitenanpassung]
 
Unter Verwendung der Pulsweitenänderung wurde das PWM- Signal mit Hilfe eines Oszilloskops wie in folgender Abbildung zu erkennen überprüft.
Hier ist zu erkennen, dass beide Kanäle (in diesem Fall Servomotor 1 und 2) über einen eindeutigen Rechteckimpuls angesteuert werden. Somit ist die Ansteuerung fehlerfrei und funktionsfähig.
 
[[Datei:PWM Signal_Prüfung.jpg|300px|thumb|zentriert|Abb. 14: PWM-Signal Test]]
 
 
Hiernach musste der Rückbau stattfinden, sodass die Servosmotoren nicht mehr direkt im Schaltschrank angeschlossen sind, sondern an der Position der späteren Sortiereinheit Verwendung finden können.
Dafür wurde das 10m lange Signal und das 10m lange Spannungsversorgungskabel auf ca.3m gekürzt.
 
Da die Platine nur zu Testzwecken diente und ein beliebiges Vertauschen der Motoren möglich ist wurde am Ende des Signalkabels ein Sub-D Stecker anglötet. Hierdurch wird eine fester Anschluss der Motoren gewährleistet. In Abbildung 15 ist der Stecker zu sehen. Auf der rechten Seite ist das Signal- und Spannungsversorgungskabel zu erkennen. Auf der linken Seite führen die Steuerleitung zu den Servos (hier noch auf die Testplatine), da die Leitungslängen zu den Servos noch nicht feststehen.
 
Die Pinbelegung ist unter folgender Adresse hinterlegt: [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams/Sortierung/Servomotoren/Dokumente/Sub-D_Stecker_Belegung.docx Pinbelegung]
 
[[Datei:Sub-D_Stecker.jpg|300px|thumb|zentriert|Abb. 15: Sub-D Stecker]]
 
Abschließend wurde ein Funktionstest der einzelnen Motoren durchgeführt. Dabei stellte sich heraus, dass 4 von den 11 Motoren nicht funktionstüchtig waren und somit nachbestellt werden mussten.
 
Das Vorgehen der Prüfung und der Fehlerbehebung wurde in einem Komponententest festgehalten und ist unter folgendem Link zu finden: [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Dokumentation/29_Komponententests/Prüfreport_Servomotoren.docx Komponententest]


=='''Einsortierung'''==
=='''Einsortierung'''==
Zeile 253: Zeile 154:




Für die Einsortierung der Legoteile in die entsprechenden Kisten wurden diese mit Aufklebern versehen (siehe Abbildung 15). Dadurch ist ein besserer Überblick garantiert und händisch kann nachverfolgt werden, ob die Maschine die Legoteile richtig einsortiert hat.
Für die Einsortierung der Legoteile in die entsprechenden Kisten wurden diese mit Aufklebern versehen (siehe Abbildung 2). Dadurch ist ein besserer Überblick garantiert und händisch kann nachverfolgt werden, ob die Maschine die Legoteile richtig einsortiert hat.


Außerdem wurde eine Liste erstellt, welche die Anzahl der Teile beinhaltet. Die Liste wurde ausgedruckt, zur Sortiermaschine gelegt und zudem an folgendem Speicherort abgelegt: [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams\Sortierung\Einsortierung\Einsortierung.xlsx Teileliste]
Außerdem wurde eine Liste erstellt, diese in Abbildung 3 zu erkennen ist, welche die Anzahl der Teile beinhaltet. Die Liste wurde ausgedruckt, zur Sortiermaschine gelegt und zudem an folgendem Speicherort abgelegt: [https://svn.hshl.de/svn/MTR_SDE_Praktikum_2015/trunk/Teams\Sortierung\Einsortierung\Einsortierung.xlsx Teileliste]






<gallery widths="500" heights="300">
<gallery widths="500" heights="300">
   Aufkleber_Kiste.JPG|Abb. 15: Aufkleber in den Fächern der Kiste
   Aufkleber_Kiste.JPG|Abb. 2: Aufkleber in den Fächern der Kiste
   Liste_Legoteile.PNG|Abb. 16: Liste der Legoteile
   Liste_Legoteile.PNG|Abb. 3: Liste der Legoteile
</gallery>
</gallery>


='''Zusammenfassung'''=
='''Zusammenfassung'''=


In dem SS18 wurde die Umsetzung des Konzeptes der Sortiereinheit gestartet.
==Umsetzung des Konzeptes==
Nach einer Machbarkeitsprüfung im CAD-Modell wurde sichergestellt, dass auch die größten Legoteile durch die Klappen in die Kästen gelangen können. Ebenfalls wurde überprüft, ob die Bauteilliste vollständig ist und es wurden die Passmaße an den Schnittstellen untersucht. Es wurde festgestellt, dass der Aufbau realisierbar ist.


Die CAD-Modelle der einzelnen Komponenten wurden bearbeitet und in einen anderen Datentyp exportiert. Nach der Erstellung einer "Bill of Material" für die Arylglasplatten wurden diese bestellt. Dem Prototyping Labor in Hamm wurden ein paar Dateien zur Produktion zugesendet und es konnte festgestellt werden, dass der LaserCutter sehr gut und maßgenau arbeitet. Erste Prototypen der Klappen wurden erfolgreich getestet. Deshalb wurden sowohl alle benötigten 3D-Druckteile als auch Lasercutter-Teile in Auftrag gegeben. Diese befinden sich zurzeit noch in der Herstellung.
In dem WS18/19 wurde die Umsetzung des Konzeptes der Sortiereinheit weitergeführt und aufgebaut.
Nachdem alle Teile geliefert wurden, konnten diese nachbearbeitet werden und der Aufbau erfolgen.


Außerdem wurde die Ansteuerung der Servomotoren überarbeitet und sowohl Hardware als auch Software optimiert.  
Zuerst wurde ein Testaufbau mit einer Klappe realisert und auf Funktion geprüft.
Hierbei wurde entdeckt, dass die Ruderhörner auf jede Klappe einzelnd angepasst werden muss.  


Hardware:
Anschließend wurde die Sortiereinheit nach folgenden Arbeitsschritten zusammengebaut:
*Kürzung der Kabellänge
*Neue Steckverbindung Sub-D Stecker
*Herstellung einer Testplatine


Software:
Testklappe:
*Ansteuerung eines Servos über Arduino
*Steckverbindung von Sortierinheit und Schaltschrank
*Änderung der Pulsweitenlänge
*Eine Testklappe fertigen
*Ansteuerung der gesamten Servos
*Klappe und Anschläge für den Testaufbau entgraten
*Testklappe zusammen kleben
*Welle anbringen
*Welle an dem Servo ausrichten
*Drehwinkelbegrenzung im Arduinoprogramm ermitteln
*Klappmechanismus von der Klappe an dem Anschlag austesten


Es wurde festgestellt, dass lediglich 7 der 11 Servomotoren funktionsfähig sind. Die fehlenden Teile wurden bestellt.
Gesamtaufbau:
Momentan sind die restlichen 3D-Druck- und LaserCutter Teile noch in Fertigung.
*Acrylglasplatten verkleben
*Klappen zusammen kleben
*Acrylglasplatten verschrauben
*Grundgerüst aus Acrylglas zusammen setzen
*Anschläge in Grundgerüst einbauen
*Wellen mit Servo ausrichten und Ruderhörner bearbeiten
*Wellen an die Klappen Kleben
*Stütze aus Boschprofil für den Einwurf fertigen und einbauen
*Drehwinkelbegrenzung im Arduinoprogramm ermitteln
 
Anschließend wurde die erstellte/geänderte Software durch Unit- und Integrationstests getestet.
 
Der Endzustand ist eine vollfuntkionsfähige Legosortierteinheit der eine Fachnummer übergeben wird und das zugehörige Teil in das richtige Fach zuverlässig einsortiert.
 
==Liste offener Punkte (LOP)==
Alle Pflichten wurden in diesem Semester erledigt und es gibt keine offene Punkte.


='''Ausblick'''=
='''Ausblick'''=


Zum WS 18/19 beginnt der Zusammenbau der Anlage.
Für das nächste Semester sind folgende Aufgaben zur Verbesserung der Sortierung möglich:
Dieser beinhaltet folgende wesentliche Punkte:
*einfarbige Klappen
 
*rechter Einschub mit den Fächern 14-16 Entnahme erleichtern
* Entgraten und Nachbearbeiten aller Teile
*Teile bleiben manchmal im Einführungsschacht liegen (evtl. zusätzliche Druckluftdüsen)
* Verkleben der 3D-Druckteile und Acrylglasplatten
* Wellen an die Klappen kleben
* Servomotoren anbringen
* Softwareimplementierung in das Gesamtsystem
* Winkeleinstellung Servomotoren (Kalibrierung)
* Schaltschrank verdrahten





Aktuelle Version vom 11. Februar 2019, 17:27 Uhr

Teammitglieder: Tobias Brandt, Marc Eidhoff

Abb. 1: CAD-Konstruktion-Sortiereinheit

Dies ist ein Unterartikel von der Legoteil_Zählmaschine, welcher den genauen Aufbau der Sortiereinheit beschreibt.

Die Sortiereinheit der Legosortiermaschine stellt einen der drei wichtigen Bereiche dar. Aufgabe der Sortiereinheit ist die Übernahme eines Legoteils von der Bildverarbeitung und der physikalische Transport in das richtige Fach.


Anforderungen und Ziele im Wintersemester 2018/2019

Im Pflichtenheft wurden folgende Aufgaben festgehalten, welche im SS2018 bearbeitet werden sollen:

Spezifikations-ID Anforderungs-ID Anforderungstitel Beschreibung der Spezifikation Arbeitsergebnisse
165 REQ10.2320 Sortierung der Legoteile in die Kästen Fertigung der Teile mit Hilfe von 3D Drucker und Laserschneidsystem (Hamm) Stückliste
166 REQ10.2320 Sortierung der Legoteile in die Kästen Zusammenbau Funktionsprüfprotokoll
166.1 REQ10.2320 Sortierung der Legoteile in die Kästen 3D-Druck-Teile kontrollieren und ggfs. entgraten Stückliste
166.11 REQ10.2320 Sortierung der Legoteile in die Kästen Segmentierte Klappen und Anschläge verbinden und kleben Stückliste
166.2 REQ10.2320 Sortierung der Legoteile in die Kästen LaserCutter Teile kontrollieren und gegebenenfalls entgraten Stückliste
166.3 REQ10.2320 Sortierung der Legoteile in die Kästen Wellen an die Testklappe Montageliste
166.4 REQ10.2320 Sortierung der Legoteile in die Kästen Grundgerüst montieren Montageliste
166.5 REQ10.2320 Sortierung der Legoteile in die Kästen Eine Klappe testweise einbauen und auf Funktion prüfen Montageliste
166.6 REQ10.2320 Sortierung der Legoteile in die Kästen Verschrauben der Acrylglasplatten Montageliste
166.61 REQ10.2320 Sortierung der Legoteile in die Kästen Erstellen und Anbringen einer Stütze für die Einführung der Teile Montageliste
166.7 REQ10.2320 Sortierung der Legoteile in die Kästen Verkleben der Acrylglasplatten Montageliste
166.8 REQ10.2320 Sortierung der Legoteile in die Kästen Weitere Klappen des Mitteltowers fertigstellen Montageliste
166.9 REQ10.2320 Sortierung der Legoteile in die Kästen Steckverbindung von Sortiereinheit und Schaltschrank Pinbelegung
160 REQ10.2320 Sortierung der Legoteile in die Kästen Konzept aus WS17 umsetzen Funktionsprüfprotokoll
130 REQ10.2320 Sortierung der Legoteile in die Kästen 1. Erkannt: Automatische Feinsortierung in gesonderte Fächer 2. Nicht erkannt: Ausschuss in seperates Fach 3. Erkannt Fremdteil: Ausschuss in seperates Fach Funktionsprüfprotokoll
131 REQ10.2320 Sortierung der Legoteile in die Kästen Überprüfung ob die Fächer richtig angesteuert werden. Teilkontrolle in den Kästen Funktionsprüfprotokoll
132 REQ10.2320 Sortierung der Legoteile in die Kästen Überprüfung ob alle nicht erkannten Teile in einem seperaten Fach liegen Funktionsprüfprotokoll
133 REQ10.2320 Sortierung der Legoteile in die Kästen Fremdteilsortierung kontrollieren Funktionsprüfprotokoll
134 REQ10.2320 Sortierung der Legoteile in die Kästen Ansteuerung der Klappen anpassen Arduino Programm
135 REQ10.2320 Sortierung der Legoteile in die Kästen Justieren der mechanischen Teile (Einstellen der Klappen) Wiki Artikel

Konstruktionsplanung

Zum besseren Verständnis werden die Teilkonzepte der letzten Semester noch einmal aufgegriffen und im folgenden Abschnitt unter der Konstruktionsplanung erläutert. Der Inhalt der Planung wurde vom Vorsemester erledigt und gehört nicht zu den Arbeitsergebnissen des Sommersemesters 2018. Die Konstruktionsplanung ist unter folgendem Unterartikel zu finden:

Konstruktionsplanung Legosortiermaschine

Anfertigung der Sortiereinheit

Der Zusammenbau der Sortiereinheit ist unter folgendem Unterartikel zu finden:

Anfertigung der Sortiereinheit

Einsortierung

Fächer mit Aufklebern des Inhalts markieren

Für die Einsortierung der Legoteile in die entsprechenden Kisten wurden diese mit Aufklebern versehen (siehe Abbildung 2). Dadurch ist ein besserer Überblick garantiert und händisch kann nachverfolgt werden, ob die Maschine die Legoteile richtig einsortiert hat.

Außerdem wurde eine Liste erstellt, diese in Abbildung 3 zu erkennen ist, welche die Anzahl der Teile beinhaltet. Die Liste wurde ausgedruckt, zur Sortiermaschine gelegt und zudem an folgendem Speicherort abgelegt: Teileliste


Zusammenfassung

Umsetzung des Konzeptes

In dem WS18/19 wurde die Umsetzung des Konzeptes der Sortiereinheit weitergeführt und aufgebaut. Nachdem alle Teile geliefert wurden, konnten diese nachbearbeitet werden und der Aufbau erfolgen.

Zuerst wurde ein Testaufbau mit einer Klappe realisert und auf Funktion geprüft. Hierbei wurde entdeckt, dass die Ruderhörner auf jede Klappe einzelnd angepasst werden muss.

Anschließend wurde die Sortiereinheit nach folgenden Arbeitsschritten zusammengebaut:

Testklappe:

  • Steckverbindung von Sortierinheit und Schaltschrank
  • Eine Testklappe fertigen
  • Klappe und Anschläge für den Testaufbau entgraten
  • Testklappe zusammen kleben
  • Welle anbringen
  • Welle an dem Servo ausrichten
  • Drehwinkelbegrenzung im Arduinoprogramm ermitteln
  • Klappmechanismus von der Klappe an dem Anschlag austesten

Gesamtaufbau:

  • Acrylglasplatten verkleben
  • Klappen zusammen kleben
  • Acrylglasplatten verschrauben
  • Grundgerüst aus Acrylglas zusammen setzen
  • Anschläge in Grundgerüst einbauen
  • Wellen mit Servo ausrichten und Ruderhörner bearbeiten
  • Wellen an die Klappen Kleben
  • Stütze aus Boschprofil für den Einwurf fertigen und einbauen
  • Drehwinkelbegrenzung im Arduinoprogramm ermitteln

Anschließend wurde die erstellte/geänderte Software durch Unit- und Integrationstests getestet.

Der Endzustand ist eine vollfuntkionsfähige Legosortierteinheit der eine Fachnummer übergeben wird und das zugehörige Teil in das richtige Fach zuverlässig einsortiert.

Liste offener Punkte (LOP)

Alle Pflichten wurden in diesem Semester erledigt und es gibt keine offene Punkte.

Ausblick

Für das nächste Semester sind folgende Aufgaben zur Verbesserung der Sortierung möglich:

  • einfarbige Klappen
  • rechter Einschub mit den Fächern 14-16 Entnahme erleichtern
  • Teile bleiben manchmal im Einführungsschacht liegen (evtl. zusätzliche Druckluftdüsen)



Dies ist ein Unterartikel von der Legoteil_Zählmaschine, welcher den genauen Aufbau der Sortiereinheit beschreibt.