Image Processing with MATLAB and AI: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Keine Bearbeitungszusammenfassung |
|||
| (8 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
| Zeile 12: | Zeile 12: | ||
|- | |- | ||
| '''Betreuer''': || [[Benutzer:Ulrich_Schneider| Prof. Dr.-Ing. Schneider]] | | '''Betreuer''': || [[Benutzer:Ulrich_Schneider| Prof. Dr.-Ing. Schneider]] | ||
|- | |||
| '''Zweitprüfer''': || Mirek Göbel | |||
|} | |} | ||
{| | {| | ||
| Zeile 20: | Zeile 22: | ||
# Solve the Image Processing Tasks with classic algorithms. | # Solve the Image Processing Tasks with classic algorithms. | ||
# Research on AI Solutions. | # Research on AI Solutions. | ||
# Evaluation of the solutions using a morphological box ([https://en.wikipedia.org/wiki/Morphological_box Zwicky box]) | |||
# Solve the Image Processing Tasks with AI algorithms. | # Solve the Image Processing Tasks with AI algorithms. | ||
# Compare the | # Compare the different approaches according to scientific criteria | ||
# | # Scientific documentation | ||
= Getting startes = | = Getting startes = | ||
| Zeile 37: | Zeile 40: | ||
! # !! Categorie !! Grader Lecture | ! # !! Categorie !! Grader Lecture | ||
|- | |- | ||
| 1 || Recovery and restoration of information || 5 | | 1 || [[Image Processing: Recovery and restoration of information|Recovery and restoration of information]] || 5 | ||
|- | |- | ||
| 2 || Image enhancement || 6 | | 2 || [[Image Processing: Image enhancement|Image enhancement]] || 6 | ||
|- | |- | ||
| 3|| Noise Reduction || 7 | | 3|| [[Image Processing: Noise Reduction|Noise Reduction]] || 7 | ||
|- | |- | ||
| 4|| Data based segmentation || 8 | | 4|| [[Image Processing: Data based segmentation|Data based segmentation]] || 8 | ||
|- | |- | ||
| 5|| Model based segmentation || 9 | | 5|| [[Image Processing: Model based segmentation|Model based segmentation]] || 9 | ||
|- | |- | ||
| 6|| Classification || 10 | | 6|| [[Image Processing: Classification|Classification]] || 10 | ||
|} | |} | ||
'''SVN Repository:'''<br> | |||
https://svn.hshl.de/svn/MATLAB_Vorkurs/trunk/Signalverarbeitung_mit_Kuenstlicher_Intelligenz | |||
== Requirements regarding the Scientific Methodology == | |||
* Scientific methodology (project plan, etc.), helpful article: [[Gantt-Diagramm| Gantt Diagramm erstellen]] | |||
* Weekly progress reports (informative), update the [[Diskussion:Image Processing with MATLAB and AI|Meeting Minutes]] | |||
* Project presentation in the wiki | |||
* Daily backup of work results in [[Software_Versionsverwaltung_mit_SVN|SVN]] | |||
*[[Studentische_Arbeiten_bei_Prof._Schneider|Student Projects with Prof. Schneider]] | |||
*[[Anforderungen_an_eine_wissenschaftlich_Arbeit| Anforderungen an eine wissenschaftlich Arbeit]] | |||
---- | ---- | ||
→ zurück zum Hauptartikel: [[Offene_Themen_von_Prof._Schneider| | → zurück zum Hauptartikel: [[Offene_Themen_von_Prof._Schneider| Requirements for a scientific project]] | ||
Aktuelle Version vom 20. Januar 2026, 10:47 Uhr

| Autor: | Ajay Paul |
| Art: | bachelor thesis |
| Starttermin: | TBD |
| Abgabetermin: | TBD |
| Betreuer: | Prof. Dr.-Ing. Schneider |
| Zweitprüfer: | Mirek Göbel |
Introduction
Signal processing has long been a basis in the analysis and manipulation of data in various domains such as telecommunications, radar, audio processing, and imaging. Signal processing has traditionally focused on analyzing, filtering, and interpreting signals in both the time and frequency domains. With the integration of AI, especially deep learning, the possibilities expand to include noise reduction and more. It is essential in many modern applications such as communications, audio and image processing, biomedical signal analysis, and control systems.
Task list
- Solve the Image Processing Tasks with classic algorithms.
- Research on AI Solutions.
- Evaluation of the solutions using a morphological box (Zwicky box)
- Solve the Image Processing Tasks with AI algorithms.
- Compare the different approaches according to scientific criteria
- Scientific documentation
Getting startes
- You are invited to the image processing class in MATLAB Grader.
- Choose the examples from the categories in table 1. Start with 1 end with 6.
- Solve the tasks with classic algorithms.
- Solve the tasks with AI.
- Save your results in SVN.
- Use MATLAB R2025b for the algorithms.
| # | Categorie | Grader Lecture |
|---|---|---|
| 1 | Recovery and restoration of information | 5 |
| 2 | Image enhancement | 6 |
| 3 | Noise Reduction | 7 |
| 4 | Data based segmentation | 8 |
| 5 | Model based segmentation | 9 |
| 6 | Classification | 10 |
SVN Repository:
https://svn.hshl.de/svn/MATLAB_Vorkurs/trunk/Signalverarbeitung_mit_Kuenstlicher_Intelligenz
Requirements regarding the Scientific Methodology
- Scientific methodology (project plan, etc.), helpful article: Gantt Diagramm erstellen
- Weekly progress reports (informative), update the Meeting Minutes
- Project presentation in the wiki
- Daily backup of work results in SVN
- Student Projects with Prof. Schneider
- Anforderungen an eine wissenschaftlich Arbeit
→ zurück zum Hauptartikel: Requirements for a scientific project